修士論文

小型マルチターン飛行時間型質量分析計を用いた 土壌起源ガスの多成分同時連続測定システムの構築

大阪大学大学院理学研究科物理学専攻 博士前期課程2年 豊田研究室 宮田 祐貴

目 次

第 1章	はじめに	3			
第2章	測定装置	7			
2.1	ガスクロマトグラフィー(Gas Chromatography: GC)				
2.2	ガスクロマトグラフィー/質量分析(GC/MS)				
2.3	質量分析装置	13			
2.4	小型マルチターン飛行時間型質量分析計(infiTOF)	13			
	2.4.1 飛行時間型質量分析計	15			
	2.4.2 電子イオン化(EI)イオン源	16			
	2.4.3 質量分離部	18			
2.5	オートサンプリングシステム............................	20			
笛ヶ音		94			
知り早		24			
3.1	先行研究での N_2 , O_2 , O_2 , N_2O の測定手法	24			
	3.1.1 N ₂ とO ₂ の測定	26			
	3.1.2 $CO_2 \ge N_2 O$ の測定手法	29			
3.2	N ₂ , O ₂ , CO ₂ , N ₂ O の同時測定の課題	31			
3.3	N ₂ , O ₂ , CO ₂ , N ₂ O の同時連続測定システムの開発	32			
第 4章	$\mathbf{N}_2 \mathbf{O}$ 測定手法の改善	36			
4.1	N ₂ O 測定の問題点	36			
4.2	サンプルインジェクション量の変更による再現性の向上........	39			
	4.2.1 サンプルループ 200 μL での再現性	39			
	4.2.2 ダイリューションシステムを利用した検量線の作成	40			
4.3	カウンティング法	43			
	4.3.1 原理	43			
	4.3.2 研究室内の大気中の N ₂ O の再現性	44			
	4.3.3 アナログ検出とカウンティング法の比較	47			

第5章	土壌起源ガスの多成分同時測定	55
5.1	測定条件切り替え時間の見直し	55
5.2	Nafion dryer を用いた除湿	57
5.3	N ₂ , O ₂ , CO ₂ , N ₂ O の測定(測定システムの検証)	59
5.4	検量線 (N ₂ , O ₂ , CO ₂ , N ₂ O)	61
5.5	土壌から発生する N ₂ , O ₂ , CO ₂ , N ₂ O の同時連続測定	67
	5.5.1 通気型非定常チャンバー法	67
	5.5.2 土壌ガスの測定	69
第6章	まとめと今後の課題	72

第6章 まとめと今後の課題

2

第1章 はじめに

土壌中では、バクテリアの活動によって「窒素の循環」[1] が行われ、その過程で N₂、O₂、 CO₂、N₂O といったガスが消費・生成される.「窒素の循環」の過程を図 1.1 に示す.まず、 空気中の窒素が、アンモニウムイオン(NH⁴₄)に変換される [2]. この過程は窒素固定と呼 ばれる.窒素肥料にも含まれるアンモニウムイオンと窒素固定によって生成されたアンモニ ウムイオンは、ともに硝酸イオン(NO⁻₃)に変換される [3]. この過程は硝化と呼ばれ、好気 条件下で進行する.硝化により生成された硝酸イオンは、亜酸化窒素(N₂O)と窒素(N₂) に変換される [4]. この過程は脱窒と呼ばれ、嫌気条件下で進行する.そして、これが繰り 返し行われる. この過程において発生する N₂O は、温室効果ガスの一つで、その温室効果 は CO₂ の 298 倍あるといわれている [5].また、オゾン層破壊の原因にもなっている [6].

土壌から発生するガスを測定する手法の一つとして、従来まではクローズドチャンバー法 が用いられてきた [7]. 図 1.2 のような大きな筒を土壌の上にかぶせて、30 分から数時間ご とにサンプリングバックに一定量のガスを捕集し、サンプリングバックを研究室に持ち帰 り、ガスクロマトグラフィー (GC: Gas Chromatography)を用いて分析を行う。クローズ ドチャンバー法を用いることによって、窒素肥料を投与した後や雨が降った日に、CO₂や N₂O の濃度の増加が確認されている [8]. しかし、1 時間毎の測定結果では夜間の突発的な N₂O の増加を捉えきれておらず [9],短時間でどのような化学変化や濃度変動が起こってい るのかといった詳しいメカニズムは解明されていない. これらのメカニズムを解明するため、 高頻度で N₂, O₂, CO₂, N₂O の濃度データを取得することが望まれている.

高頻度でデータを取得するためには、研究室にサンプルを持ち帰るのではなく、その場 (オンサイト)で測定することが好ましい. CO₂の測定では、リアルタイム測定が可能な赤 外線ガス分析計が用いられている.しかし、現状の N₂O の測定では、GC の検出器として 放射線源(⁶³Ni)を必要とする電子捕獲検出器(ECD)が用いられるため、現場に持ち出す ことが困難である [10].また、N₂、O₂、CO₂、N₂O 全てのガスを同時に測定する場合、気 体の種類によって異なる検出器を用いる必要性があるため [10][11]、複数ガスの定量的な相 関が容易に得られなくなる.よって、一つの計測器で分析することが望まれている.

複数のガスを一つの計測器で分析する手法として,GCと質量分析(MS: Mass Spectrometry)を組み合わせたGC/MSがあげられる.しかし,一般的に質量分析装置は大型であり,

現場に持ち出すことは困難である.また、小型の質量分析装置も存在するが、質量分解能が低く、整数質量が同じ44である CO_2 と N_2O を同時に測定できないため、GC で 3~10分かけて CO_2 と N_2O を分離する必要がある.一方、高質量分解能の質量分析装置を用いて CO_2 、 N_2O を質量で分離できる場合、GC で分離を完全に行う必要はない.その結果、測定時間の短縮につながり、より高頻度な測定を行うことができると期待される.

小型で高質量分解能が得られる装置として,当研究室で開発・改良された小型マルチター ン飛行時間型質量分析計「MULTUM-S II」[12] がある.この装置は,8の字の形に配置さ れた電極をもち,同一飛行空間でのイオンの周回数を増やすことによって,小型でありなが ら高質量分解能を達成できる.したがって,GCとMULTUM-S IIを組み合わせた「GC-MULTUM-S II」を用いることによって,現場でN₂,O₂,CO₂,N₂Oのガスを一つの検出 器で高頻度に測定することが可能である[13][14].

先行研究 [14] により, GC-MULTUM-S II を用いて, 1分間隔で N₂, O₂, CO₂, N₂O を 測定できるシステムが構築されたが, 問題点が二つあった. 一つ目は, N₂ と O₂, CO₂ と N₂O で測定条件を切り替えなければならないことである. N₂ と N₂O の存在比は 6 桁異な り, この違いを測定できるだけのダイナミックレンジがない. また, 高質量分解能を達成す るために N₂, O₂, CO₂, N₂O 全てを複数回周回させると周回遅れが発生し, 周回数の異な るイオンが混在して判別が難しくなる. これらの理由から, N₂ と O₂ は飽和しないよう検 出器の増幅率をおさえ, CO₂ と N₂O は検出器の増幅率を高めつつ, 周回数を増加させ, 高 質量分解能で測定することが必要となる. 先行研究ではサンプルガスを 2 回インジェクショ ンすることによって, それぞれの測定条件を切り替えて計測が行われた. しかし, 測定条件 によって異なるサンプルを計測することになるため, N₂, O₂, CO₂, N₂O の定量的な相関 が得られていなかった. 二つ目は, 大気レベル濃度 (350 ppbv) の N₂O が微量であるため, 計測されるイオン量が十分でなく, 高精度での定量が困難なことである. そのため, 土壌か ら発生する N₂O によって大気中の N₂O の濃度が 1 ppmv 以上になった場合を対象として測 定が行われていた.

本研究ではこれらの課題を解決するため,GCで試料が分離された時間(保持時間)ごと に測定条件を変更する自動測定システムの開発および N₂O の測定手法の構築を行った.

本論文では,第2章では測定装置,小型マルチターン飛行時間型質量分析計(infiTOF) とガスクロマトグラフィー(GC),これらを組み合わせたGC/MSについて説明する.第3 章ではサンプルガスを定量的に測定するためのオートサンプリングシステムおよびN₂,O₂, CO₂,N₂Oの同時連続測定システムについての説明をする.第4章ではN₂Oの再現性を高 めるため,測定手法の改善を行った結果を報告する.第5章では土壌から発生するガスを測 定するための条件を整え,実際に土壌から発生するガスをリアルタイムで計測した結果を報 告する. 第6章ではまとめと今後の課題を述べる.

図 1.1: 窒素の循環

図 1.2: ガス捕集用チャンバーの写真

第2章 測定装置

2.1 ガスクロマトグラフィー (Gas Chromatography: GC)

ガスクロマトグラフィーとは、固定相と移動相が平衡の場を用い、試料成分によって両相 への相互作用に差があることを利用して、それぞれの成分を分離する手法のことである.ガ スクロマトグラフ(装置)は、試料導入部とオーブン、カラム、検出器、キャリアガス流量 制御部から成り立っており、カラム内に導入されたガスはキャリアガスの流れによって検出 器まで運ばれる.キャリアガスには主にヘリウム、窒素、水素などの化学的に不活性なも のが用いられる.サンプルガスとカラム内の固定相との相互作用によって成分が分離され、 キャリアガスと共に検出器に至る.その結果、縦軸を信号強度、横軸をカラムに試料が導入 されてから検出器に到達されるまでの時間(保持時間: retention time)としたクロマトグ ラムを得ることができる.クロマトグラムのピーク面積を用いて成分の定量を行う.図2.1 に GC の基本構成、図2.2 に得られるクロマトグラムの概念図を示す.

図 2.1: GC の基本構成

図 2.2: GC で得られるクロマトグラムの概念図

2.2 ガスクロマトグラフィー/質量分析 (GC/MS)

ガスクロマトグラフィーと質量分析を組み合わせた手法を、ガスクロマトグラフィー/質量 分析 (GC/MS) という. GC/MS で大気ガスの分析に一般的に用いられるカラムは、Carbon-PLOT (Porous Layer Open Tubular) カラムである [11][15]. N₂, O₂, CO₂, N₂O などの ガスを測定した場合、Carbon-PLOT カラム内壁の多孔質粒子での相互作用の違いを利用し て分離され、質量分析装置で検出される. GC/MS では一定の時間間隔でマススペクトルを 測定する. 図 2.3 に GC/MS で N₂, O₂, CO₂, N₂O を測定して得られるイメージ図を示 す. 特定の m/z ごとのクロマトグラムをマスクロマトグラムといい、クロマトグラム上で 重なっている N₂ と O₂ を質量分析装置を用いて分離することができる.

図 2.3: GC/MS で得られるデータのイメージ図

N₂, O₂, CO₂, N₂O を図 2.3 のように分離するには 3~10 分の測定時間が必要となる. し かし、本研究ではバクテリアの活動を観測するために高頻度での測定が望まれる. 測定時間 を短縮するには分析成分の保持時間 (t_R) を小さくすればよい. GC の理論 [20] に従えば、 成分 x の保持時間 t_x はカラムの長さ L と成分 x の線流速 u_x を用いて,

$$t_x = \frac{L}{u_x} \tag{2.1}$$

と表せる. また, 成分xの線流速 u_x は, キャリアガスの線流速uを用いて,

$$u_x = u\left(\frac{n_m}{n_s + n_m}\right) \tag{2.2}$$

と表せる. n_s と n_m はそれぞれ、成分xのうちの固定相に存在する物質量、移動相に存在する物質量である.また、固定相と移動相に存在する物質量の比k'を定義する.

$$k' = \frac{n_s}{n_m} \tag{2.3}$$

k'を用いて、(2.2) 式を書きかえると、

$$u_x = u\left(\frac{1}{\frac{n_m}{n_m} + \frac{n_s}{n_m}}\right) = \frac{u}{1+k'} \tag{2.4}$$

と表せる. キャリアガスがカラムを通過する時間 t₀ は,

$$t_0 = \frac{L}{u} \tag{2.5}$$

と表せるので,成分 x の保持時間 t_x は (2.1)式, (2.4)式, (2.5)式より,

$$t_x = \frac{ut_0}{u_x} = t_0 \left(1 + k'\right) \tag{2.6}$$

と表せる. (2.6) 式より,

$$k' = \frac{t_x - t_0}{t_0} \tag{2.7}$$

と表せ、カラムを通過する時間のうち、固定相に存在した時間と移動相に存在した時間 t_0 の 比がk'であるということも示している.(2.5)式と(2.6)式より、

$$t_x = \frac{L}{u} \left(1 + k' \right) \tag{2.8}$$

と表せる.したがって、(2.8) 式から t_x を小さくするためには L を小さくする(カラムの長 さを短くする)か、u を大きくするか、もしくは保持比 k' を小さくする必要があることがわ かる.線流速 u を極端に速くすることはキャリアガスの流量を多くすることになり、イオン 源へのキャリアガスの流入量が増えて、イオン源の真空度が悪くなるため好ましくない.ま た保持比 k' はカラムの昇温を行うことで小さくなるが,オンサイトでの簡便な測定のため に GC オーブンの使用は避けたい.

そこで、カラムの長さ*L*を短くすることを試みた. 図 2.4 に、このとき GC/MS で測定し て得られるイメージ図を示す.カラムを短くすると CO₂ と N₂O の保持時間がほぼ重なって しまう.この場合、質量分析装置で CO₂、N₂O を分離する必要があるが、それぞれの精密 質量は 43.9898、44.0011 で、その差が 0.011 であるため、質量分解能が 8000 以上必要とな る (図 2.5 (b)).GC/MS の小型質量分析装置として一般的に用いられる四重極質量分析 計では、質量分解能が数百程度しかないため CO₂、N₂O を分離できない(図 2.5 (a)).一 方、高質量分解能を持つ GC/MS で測定した場合は、図 2.6 に示すように、得られるイメー ジ図を示す.これにより、N₂、O₂、CO₂、N₂O のマスクロマトグラムを別々に得ることが でき、それぞれのガスの定量が可能になる.

以上より、土壌中のバクテリアの活動を観測するためには、小型でかつ高質量分解能を達成できる質量分析装置が必要となる。そのような小型でありながら高質量分解能である質量分析装置として、当研究室で開発された MULTUM-S II がある。実際に先行研究 [14] で、MULTUM-S II と GC を組み合わせて土壌中のバクテリア由来のガスが測定されている。

図 2.4: カラムを短くした場合に GC/MS で得られるデータのイメージ図

図 2.5: 分解能による CO₂, N₂O のマススペクトルの違い

図 2.6: カラムを短くした場合に高質量分解能 GC/MS で得られるデータのイメージ図

2.3 質量分析装置

質量分析(Mass Spectrometry: MS)とは、質量分析装置を用いて物質をイオン化し、イ オンの質量電荷比(*m/z*)とその強度を測定する分析手法である。質量分析装置は、イオン 源、質量分離部、検出器で構成される。質量分析は、他の分析法と比較して微量測定を行う ことができ、かつ多成分を同時に測定ができるという利点があり、近年ではその利点を活か して環境分析の分野でも利用されている。

当研究室では、小型で高質量分解能を達成できる質量分析装置を開発するため、Poschenrieder によって提案されたマルチターン飛行時間型質量分析計のアイデアに着目し[16]、マル チターン飛行時間型質量分析計の開発を行ってきた.そして、排気系、質量分離部、検出器、 電源・制御系など全てを含めたサイズが 50 cm × 58 cm × 27 cm で、重量は 35 kg と、持ち 運び可能なサイズでありながら、30000 以上の高質量分解能をもつ「MULTUM-S II」を開発 した.本研究では、この MULTUM-S II をベースに製品化された infiTOF (infiTOF-UHV, MSI.TOKYO Inc., Tokyo, Japan)を質量分析装置として使用した.

2.4 小型マルチターン飛行時間型質量分析計 (infiTOF)

infiTOF は電子イオン化(EI: Electron Ionization)イオン源を有するマルチターン飛行 時間型質量分析計である.infiTOF のサイズは 54.5 cm × 61 cm × 21.5 cm で,重量は 45 kg となっている.図 2.7 は infiTOF の全体写真で,図 2.8 は infiTOF の質量分離部の内部 写真である.

図 2.7: 装置の全体の写真

図 2.8: infiTOF の質量分離部

2.4.1 飛行時間型質量分析計

infTOFで採用している飛行時間型質量分析計とは、同じエネルギーで加速したイオンの 飛行時間を求めることによって質量電荷比を決定する質量分析装置のことである。図 2.9 の ように、イオン源でイオン化された質量 m、価数 z のイオンは、電圧 V で加速され、距離 L の空間を飛行する.イオンの速度を v として、加速された後のエネルギー保存則について 考えると

$$zeV = \frac{1}{2}mv^2 \tag{2.9}$$

と表すことができる(ただし,イオンの初期速度を0とする). e は素電荷である.この式 から

$$v = \sqrt{\frac{2zeV}{m}} \tag{2.10}$$

となり、検出器に到達するまでの飛行時間 t は

$$t = \frac{L}{v} = L\sqrt{\frac{1}{2eV}}\sqrt{\frac{m}{z}}$$
(2.11)

と表すことができる. すなわち, t は質量電荷比 m/z に依存している.

図 2.9: 飛行時間型質量分析計の模式図

質量分解能 R は,飛行時間型の場合,以下のように定義される.

$$R = \frac{m}{\Delta m} = \frac{t}{2\Delta t} \tag{2.12}$$

 Δm はマススペクトルピークの半値全幅, t は飛行時間であり, Δt は飛行時間スペクトルの ピーク半値全幅をとる. 質量分解能とは, どれだけ近い質量のイオンを分けることができる かを示しており, 例えば質量分解能が 100 ならば m/zが 100 と 101 のピークを分けること ができる. Rを大きくするためには同じ m/zのイオンの飛行時間のずれ Δt を小さくする か, 飛行時間 tを大きくしなければならない. Δt を小さくする方法として, 静電界イオン ミラー [17] や扇形電場 [16] を用いたエネルギー収束方法などが開発されている. これによ りスペクトルピーク幅は数 ns 以内に収まっている. しかし現在の回路技術, 検出器の応答 時間の問題でそれ以上小さくすることはできない. 一方, tを大きくするには (2.11) 式よ り飛行距離 Lを長くするか, 電圧 V を小さくすれば良い. しかし, Lを長くすると, 装置 を大きくしなければならない. 一方, V を小さくすると検出効率の低下につながる. この問 題を解決し, 装置を大きくせずに飛行距離 L を伸ばすことで, 質量分解能を高めた装置が 小型マルチターン飛行時間型質量分析計 infTOF である.

2.4.2 電子イオン化 (EI) イオン源

infTOFでは、電子イオン化法(EI: Electronic Ionization)を採用している。電子イオン 化法では、フィラメントから飛び出す熱電子を加速し、電子を気体試料に衝突させてイオン 化する。測定対象は、ガスもしくは揮発性物質など、気体として導入できるものに限られる。 数十 eV 程度の運動エネルギーを持つ電子が中性の気体分子に衝突すると、電子が持つ運動 エネルギーの一部を気体分子に受け渡す。その結果、気体分子は電子を放出し、正の分子イ オンとなる。

$$M + e^- \to M^{+*} + 2e^-$$

図 2.10 にイオン源の模式図を示す.フィラメントの電流値は $V_{filament}$ で決定され,発生した熱電子をイオン化電圧 (V_{ion}) で加速し,気体試料に衝突させてイオン化する.イオン化されたイオンは初期位置のばらつきにより,獲得するエネルギーが異なるため,飛行時間に差が生じる.そこで,本装置のイオン源は,飛行時間の広がりを抑えるために Wiley-McLaren タイプの二段加速型イオン源を採用している [18].以下,二段加速法の原理を説明する.イオン化領域から二段目領域までの飛行時間 t_1 は,一段目の電極に印加する電圧を V_{push} ,二段目の電極に印加する電圧を V_{float} ,イオンの初期位置を s,質量を m,電荷を q とすると,

$$t_1 = \sqrt{\frac{2md_1}{qV_{push}s}}$$
(2.13)

と表すことができる. $d_1 \ge d_2$ は図 2.10 中に示した電極間の距離である. 同様に、二段目の 領域での飛行時間 t_2 は

$$t_2 = \frac{d_2}{V_{float}} \sqrt{\frac{2m}{q}} \left(\sqrt{\frac{sV_{push}}{d_1} + V_{float}} - \sqrt{\frac{sV_{push}}{d_1}} \right)$$
(2.14)

と表すことができる。自由空間での飛行時間 t3 は

$$t_3 = L\sqrt{\frac{m}{2q}} \frac{1}{\sqrt{\frac{sV_{push}}{d_1} + V_{float}}}$$
(2.15)

と表すことができる. したがってイオンの全飛行時間t(s)は(2.13),(2.14),(2.15) 式より

$$t(s) = t_1 + t_2 + t_3 \tag{2.16}$$

と表せる.ここで粒子の初期位置を s_0 として、t(s)を $s = s_0$ の周りで級数展開し、一次近 似部分を0とおく.この条件となる収束距離*L*は

$$L = 2d_1 \left(l_0 + k_0 \right)^{\frac{3}{2}} \left\{ \frac{1}{\sqrt{l_0}} - \frac{d_2}{d_1 \sqrt{l_0 \left(l_0 + k_0 \right)} \left(\sqrt{l_0} + \sqrt{l_0 + k_0} \right)} \right\}$$
(2.17)

となる. ただし, k0 と l0 はそれぞれ

$$k_0 = \frac{V_{float}}{V_{push}}, \ l_0 = \frac{s_0}{d_1}$$
 (2.18)

である. 収束距離 L は装置固有の値であるため, (2.17), (2.18) 式より V_{push} と V_{float} の比 を変化させることで,同じ質量のイオンの初期位置のばらつきによって生じる飛行時間の違 いを収束するように調節する.

図 2.10: EI イオン源の模式図

2.4.3 質量分離部

infTOF は、同一軌道を複数回周回させることにより飛行距離を伸ばし、装置を大きく することなく高質量分解能を達成できる装置である。周回部の収差が大きい場合、同一軌 道を周回させていくにつれてイオンの空間と時間の広がりが大きくなってしまう。そこで、 infTOF では、完全時間、空間収束を満たしたイオン光学系を採用している [19]、infTOF は、図 2.11 に示す4つの扇形電極、入射・出射用の扇形電極が組み合わされている。infTOF では、図 2.12 に示す半周モードと周回モードでの測定が可能となっている。半周モードは infTOF に入射されたイオンを最短距離で出射させて検出するモードで、低分解能であるが 透過率は高い。周回モードは infTOF の軌道を希望した回数だけ周回させることができる モードで、半周モードと比べると透過率は低下するが [12]、高分解能測定が可能である。

図 2.11: infiTOF の模式図

イオン源でイオン化されたイオンは入射用扇形電極(Injection sector)を通り、周回部へ と入る.半周モードでは、出射用電極(Ejection sector)には常に電圧が印加されている. 周回モードではEjection sector には電圧が印加されておらず、さらにイオンが周回し戻って くるまでに Injection sector をアース電位に落とす。希望の周回数だけイオンを周回させた 後で Ejection sector に電圧を印加する。Injection sector と Ejection sector の電極に電圧を 印加するタイミングを制御することで、周回数を制御する。図 2.13 にタイミングチャートを 示す。測定の繰り返しは1 kHz である。そして、検出器(14880, ETP Electron Multipliers, Ermington, Australia)からのシグナルをデジタイザで取得する。

図 2.13: infiTOF のタイミングチャート

2.5 オートサンプリングシステム

infiTOF のイオン源に一定量の試料ガスを間欠的に導入するオートサンプリングシステムを製作した. 図 2.14 にオートサンプリングシステムの概略図, 図 2.15 に写真を示す.本システムは, 6 方弁 (AU-CF-6, GL Sciences Inc., Tokyo, Japan) (VA-11, FLOM Inc., Tokyo, Japan), 電磁弁 (USB 3-6-1, CKD Corporation, Aichi, Japan), マスフローコントローラー (M-100, MKS instruments Inc., Andover, USA), 50 μ L のサンプルループ (径: 1/16 インチ), ダイアフラムポンプ (N84.3ANDC, KNF Neuberger Inc., Trenton, USA), PLOT カラム (GS-CARBONPLOT, 15 m × 0.32 mm i.d.; film thickness 3.00 μ m, Agilent Technologies Inc., CA, USA) で構成されている.

図 2.14: オートサンプラーの概略図

図 2.15: オートサンプラーの写真

次に詳細な制御方法について説明する。弁とポンプの ON/OFF は, Digital I/O (USB-6501, National Instruments, TX, USA) を LabVIEW (LabVIEW 2010, version 10.0f2 (32-bit))を用いて制御した。制御のタイミングチャートを図 2.16, LabVIEW のブロック ダイアグラムとフロントパネルを図 2.17, 2.18 に示す。測定を行う場合,電磁弁 A と電磁 弁 B を開け,ダイアフラムポンプでサンプリング管内の残留ガスを排気しながらガスサンプ ルをサンプルループ内へと導入する。続いて電磁弁 A を開けたまま電磁弁 B を閉じ,ガス サンプルを大気圧で導入する。最後に 6 方弁の流路を変えることによって, Carbon-PLOT カラムへとサンプリングしたガスを流す。

ポンプで排気しながらサンプルガスを吸引すると、ガスを大量に消費し、培養器や捕集 チャンバー内が減圧され、土壌から余分なガスが放出される.これを防ぐために、ポンプで 排気しながらガスを導入するのではなく、一度サンプルループ内をポンプで減圧させた後で サンプルを導入する手法を試みた.しかし、この手法では6方弁内が減圧され、6方弁の切 り替え時に大量の大気が混入した.そのため、ポンプで排気しながらガスの導入を行う手法 を採用した.

超高純度 He (99.99995 %, Neriki Gas Inc., Hyogo, Japan)をキャリアガスとして用い, 流量はマスフローコントローラーで 2.0 cc/min に設定した.カラムで分離を行った後, infiTOF で測定を行った.これら一連の動作の繰り返しを行うことで連続測定が可能である.

図 2.16: オートサンプラーの ON/OFF タイミングチャート

図 2.17: LabVIEW のブロックダイアグラム

<u></u> 漢定回数指定 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	区積極過時間(秒) 19.0011 クラスタ Time Target (s) 19 記列 0 0	経過時間 (約) 883.007 6-port valv	時間指定 「Time Target () 」 Valve A Valve B Pump Valve C ve change	Time Target (s) 20 20 20 20 20 20 20 20 20 20	Time Target (s)	Time Target (s)	Time Target (s)	

図 2.18: LabVIEW のフロントパネル

第3章 N₂, O₂, CO₂, N₂Oの同時連続測定 手法

本章では,先行研究でのN₂,O₂,CO₂,N₂Oの測定手法と本研究で新しく開発したN₂,O₂,CO₂,N₂Oの測定手法の比較を行う.

3.1 先行研究でのN₂, O₂, CO₂, N₂Oの測定手法

先行研究 [14] で、GC-MULTUM-S II を用いた N₂、O₂、CO₂、N₂O の測定システムが構 築された.しかし、N₂ と N₂O の存在比が 6 桁異なり、この違いを測定できるだけのダイナ ミックレンジがなく、また高質量分解能を達成するために N₂、O₂、CO₂、N₂O 全てを複数 回周回させると周回遅れが発生し、周回数の異なるイオンが混在して判別が難しくなるとい う問題があった.したがって、N₂ と O₂ は飽和しないよう検出器の増幅率をおさえ、CO₂ と N₂O は検出器の増幅率を高めつつ、周回数を増加させ、高質量分解能で測定することが 必要となる.そのため、先行研究では、N₂ と O₂ を測定する条件で1回サンプルインジェ クションを行い、その後に CO₂ と N₂O を測定する条件でもう1回サンプルインジェクショ ンを行っていた.この計2回のサンプルインジェクションを繰り返し行うことで、N₂、O₂、 CO₂、N₂O のデータを取得した.2回のサンプルインジェクションで、N₂、O₂、CO₂、N₂O のブータを取得した.2回のサンプルインジェクションで、N₂、O₂、CO₂、N₂O の測定を行うイメージ図を図 3.1 に示す.

図 3.1: 2回のサンプルインジェクションで N₂, O₂, CO₂, N₂Oの測定を行うイメージ図

3.1.1 N₂とO₂の測定

N₂とO₂は低質量分解能でも分離することが可能であるため、半周モード(質量分解能: 400)で測定を行った.表 3.1 に示す条件で、オートサンプリングシステムを用いて研究室 内の大気を導入した.電圧を印加する電極の名称は図 2.10、図 2.11 の定義の通りである. $V_{matsuda}$ とはマツダプレート [21] に印加する電圧、 V_{einzel} はアインツェルレンズ [22] に印加 する電圧、Detector voltage は検出器に印加する電圧、Filament current はフィラメント電 流、Mass range は測定する質量範囲、Cycle condition は周回条件、Ion source temperature はイオン源の温度、Column temperature はカラムの温度、Repetition time はマススペクト ルの積算回数である。図 3.2 が、測定によって得られた TIC(Total Ion Current)クロマト グラムである。TIC クロマトグラムとは、測定する質量範囲内すべての m/z の信号を加算 して得られたクロマトグラムのことである。

Injection outer voltage	$1144.5 { m V}$
Injection inner voltage	-1190.5 V
Ejection outer voltage	$975.5 \mathrm{~V}$
Ejection inner voltage	-1086.5 V
Orbit outer voltage	1082.5 V
Orbit inner voltage	-1279.5 V
V _{matsuda}	$560 \mathrm{V}$
V _{float}	3291 V
V _{push}	974 V
V _{einzel}	3851 V
Detector voltage	2300 V
Vion	20 V
Filament current	3900 mA
Mass range	$10 \sim 60$
Cycle condition	Linear
Length of column	15 m
Gas flow	2 cc/min
Ion source temperature	100 °C
Column temperature	27 °C
Repetition time	200
Sample volume	$50 \ \mu L$
Sample	Air

表 3.1: infiTOF, GC のパラメータ

図 3.2: 測定条件が表 3.1 の場合に大気を導入して得られた TIC クロマトグラム

保持時間が 0.3 min, 0.56 min, 4.0 min にピークが検出された。0.61 min におけるマス スペクトルを図 3.3 に示す.

図 3.3: 保持時間 0.61 min でのマススペクトル

図 3.3 の H₂O, N₂, O₂ は残留ガス由来である. m/z 44 に検出されているピークは, CO₂ と N₂O である. しかし,半周モードで分解能が低いため,判別はつかない.

m/z 18, 28, 32, 44のマスクロマトグラムをそれぞれ図 3.4, 図 3.5, 図 3.6, 図 3.7 に示 す.マスクロマトグラムは, それぞれのマススペクトルピークの重心値と半値全幅 (FWHM) を求め,重心値 ± FWHM の範囲内のマススペクトル強度の合計を経過時間毎にプロットす ることで作成する.そして,定法 [23] に基づき,得られたマスクロマトグラムピークの面 積値を決定する.データ数が多いことや人為的なミスを避けるため,オープンソースソフト ウェア QtPlatz[24] でデータの自動処理を行い,ピーク面積値を求めた.

図 3.4: 大気を導入して得られた m/z 18 のマスクロマトグラム

図 3.5: 大気を導入して得られた m/z 28 のマスクロマトグラム

図 3.6: 大気を導入して得られた m/z 32 のマスクロマトグラム

図 3.7: 大気を導入して得られた m/z 44 のマスクロマトグラム

3.1.2 CO₂ と N₂O の測定手法

CO₂ と N₂O を分離するためには、質量分解能が 8000 以上必要となる.そこで、infiTOF の周回条件を 50 周(質量分解能: 15,000)に設定した.また、N₂O の大気レベル濃度が 350 ppbv と他の成分よりも低いこと、および半周から 50 周に周回数を増加させたためにイオ ンの透過率が約 1/12 に低下することを考慮し、検出器電圧を 2800 V に設定し、増幅率を 約 100 倍にした.測定条件は表 3.2 に示す通りである.この条件でオートサンプラーを用い、 研究室内の大気を導入した.得られた TIC クロマトグラムを図 3.8 に示す.

Injection outer voltage	1144.5 V
Injection inner voltage	-1190.5 V
Ejection outer voltage	975.5 V
Ejection inner voltage	-1086.5 V
Orbit outer voltage	1082.5 V
Orbit inner voltage	-1279.5 V
V _{matsuda}	560 V
V _{float}	3291 V
V_{push}	974 V
V_{einzel}	3851 V
Detector voltage	2800 V
V _{ion}	20 V
Filament current	3900 mA
Mass range	$43 \sim 44.7$
Cycle condition	50 cycle
Length of column	15 m
Gas flow	2 cc/min
Ion source temperature	100 °C
Column temperature	27 °C
Repetition time	200
Sample volume	$50 \ \mu L$
Sample	Air

表 3.2: infiTOF, GC のパラメータ

図 3.8: 測定条件が表 3.2 の場合に大気を導入して得られた TIC クロマトグラム

Carbon-PLOT カラムの長さ 15 m, キャリアガスの流量 2 mL/min の条件では, CO₂ と N₂O を保持時間で分離することが可能である.しかし, CO₂のクロマトグラムピークのテー リングに N₂O のクロマトグラムピークが埋もれてしまっている.したがって, 1 分以内で の測定を行うためには高質量分解能が必要となる.

保持時間 0.70 min から 0.76 min まで積算したマススペクトルを図 3.9 に示す. 図 3.9 から, この周回条件で CO₂ と N₂O が質量分離できていることを確認できる. CO₂, N₂O の マスクロマトグラムをそれぞれ図 3.10, 図 3.11 に示す.

図 3.9: 大気を導入して得られた CO₂ & N₂O のマススペクトル

図 3.10, 図 3.11 より, CO₂ は 0.58 min に, N₂O は 0.72 min にピークが検出された.また,図 3.11 の 0.58 min に落ち込みがあるが,これは CO₂ のイオンが大量に検出されたために,CO₂ のマススペクトルのテーリングが N₂O の半値全幅の範囲にまで影響を及ぼしていることが原因である.また,0.28min ~ 0.35 min にもピークがある.これは,N₂ と O₂ と同じ保持時間であり,EI イオン源で N₂ と O₂ が反応を起こし,N₂O が生成されていると考えられる.

図 3.10: 大気を導入して得られた CO2 のマスクロマトグラム

図 3.11: 大気を導入して得られた N₂O のマスクロマトグラム

3.2 N₂, O₂, CO₂, N₂Oの同時測定の課題

3.1.1, 3.1.2節で, N₂, O₂, CO₂, N₂O それぞれの測定手法を示した.しかし, N₂ & O₂ と CO₂ & N₂O では測定条件(検出器電圧・周回条件)が異なるため,同じ条件で同時に測 定することができない.サンプルガスを2回インジェクションすることによって,それぞれ の測定条件を切り替え計測を行う手法は,測定条件によって異なるサンプルを計測すること になるため, N₂, O₂, CO₂, N₂O の定量的な相関が得られないという課題があった.

3.3 N₂, O₂, CO₂, N₂Oの同時連続測定システムの開発

そこで、本研究では Helio board(Macnica Helio SoC Evaluation Kit, ALTIMA Corp., Kanagawa, Japan)と高速デジタイザ(U5303A PCIe 12-bit High-Speed Digitizer, Keysight Technologies Inc., CA, USA)を infiTOF に組み込んだ新しい制御システムを開発した、制御・解析用ソフトウェアとして、保持時間ごとに infiTOF の周回条件(質量分解能)および検出器の増幅率を変更する「リアルタイム設定変更機能」を追加したオープンソースソフトウェア(QtPlatz v3.1.4-411)[24] を使用した。新しい制御システムの模式図を図 3.12 に、リアルタイム設定変更機能のイメージ図を図 3.13 に示す.

図 3.12: 新しい制御システムの模式図

図 3.13: リアルタイム設定変更機能のイメージ図

測定途中で測定条件を変更し、1回のインジェクションで大気中の N_2 , O_2 , CO_2 , N_2O を検出できた. 今回の場合、測定条件が完全に変更されるまでの時間は 1.8 秒である (0.47 $\mathcal{O} \sim 0.50 \mathcal{O}$). したがって、 $N_2 \& O_2 \& CO_2 \& N_2O$ の保持時間の差約 2 秒以内に問題なく測定条件を切り替えることが可能である. 表 3.3 に示す条件で、研究室内の大気を測定したデータを図 3.14 に示す.

	測定条件1(N ₂ , O ₂)	測定条件 2(CO ₂ , N ₂ O)	
Injection outer voltage	1144.5 V		
Injection inner voltage	-1190.5 V		
Ejection outer voltage	975.5 V		
Ejection inner voltage	-1086.5 V		
Orbit outer voltage	1092.5 V		
Orbit inner voltage	-1279.5 V		
V _{matsuda}	560 V		
V _{float}	3291 V		
V_{push}	974 V		
V_{einzel}	3851 V		
Detector voltage	2300 V 280		
V _{ion}	20 V		
Filament current	3900 mA		
Mass range	$10 \sim 60$	$\textbf{43.0} \sim \textbf{44.7}$	
Laps	Laps Linear 50		
Length of column	15 m		
Gas flow	2,0 cc/min		
Ion source temperature	100 °C		
Column temperature	27 °C		
Repetition time	500		
Sample volume	$50 \ \mu L$		
Sample	Air		

表 3.3: infiTOF, GC のパラメータ

図 3.14: 自動測定システムで得られた研究室内の大気の測定データ
第4章 N_2O 測定手法の改善

4.1 N₂O 測定の問題点

土壌中のバクテリアの活動を観測するためには、土壌から発生する N_2 , O_2 , CO_2 , N_2O を精度よく定量する必要がある.しかし、先行研究 [14] では、感度の問題により大気レベル 濃度(350 ppbv)の N_2O が測定できておらず、土壌から発生する N_2O によって大気中の N_2O の濃度が1 ppmv以上になった場合を対象として測定が行われていた.そこでまず、大 気レベル濃度の N_2O の定量精度の評価を行った。測定精度は、相対標準偏差(RSD: relative standard diviation)を用いて評価した.RSDは、標準偏差 σ と算術平均 \bar{x} を用いて、

$$RSD = \frac{\sigma}{\bar{x}} \times 100 \tag{4.1}$$

と定義される。測定データの標準偏差 σ は測定回数n,測定データx,測定データの平均 \bar{x} を用いて、

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}} \tag{4.2}$$

と表すことができる.

研究室内の大気中の N₂O の RSD を図 4.1 に示す。測定条件は表 4.1 に示す通りで、サン プルは 1 分間隔で 30 回インジェクションした。

図 4.1: 研究室内の大気を導入して得られた N₂O の RSD

1144.5 V
-1190.5 V
975.5 V
-1086.5 V
1082.5 V
-1279.5 V
560 V
3291 V
974 V
$3851 \mathrm{V}$
3851 V 2800 V
3851 V 2800 V 20 V
3851 V 2800 V 20 V 3900 mA
$\begin{array}{c} 3851 \text{ V} \\ 2800 \text{ V} \\ 20 \text{ V} \\ 3900 \text{ mA} \\ 43 \sim 44.7 \end{array}$
$\begin{array}{c} 3851 \text{ V} \\ 2800 \text{ V} \\ 20 \text{ V} \\ 3900 \text{ mA} \\ 43 \sim 44.7 \\ 50 \text{ cycle} \end{array}$
$\begin{array}{c} 3851 \text{ V} \\ 2800 \text{ V} \\ 20 \text{ V} \\ 3900 \text{ mA} \\ 43 \sim 44.7 \\ 50 \text{ cycle} \\ 15 \text{ m} \end{array}$
$\begin{array}{c} 3851 \text{ V} \\ 2800 \text{ V} \\ 20 \text{ V} \\ 3900 \text{ mA} \\ 43 \sim 44.7 \\ 50 \text{ cycle} \\ 15 \text{ m} \\ 2 \text{ cc/min} \end{array}$
$\begin{array}{c} 3851 \text{ V} \\ 2800 \text{ V} \\ 20 \text{ V} \\ 3900 \text{ mA} \\ 43 \sim 44.7 \\ 50 \text{ cycle} \\ 15 \text{ m} \\ 2 \text{ cc/min} \\ 100 \ ^{\circ}\text{C} \end{array}$
$\begin{array}{c} 3851 \text{ V} \\ 2800 \text{ V} \\ 20 \text{ V} \\ 3900 \text{ mA} \\ 43 \sim 44.7 \\ 50 \text{ cycle} \\ 15 \text{ m} \\ 2 \text{ cc/min} \\ 100 \ ^{\circ}\text{C} \\ 27 \ ^{\circ}\text{C} \end{array}$
$\begin{array}{c} 3851 \text{ V} \\ 2800 \text{ V} \\ 20 \text{ V} \\ 3900 \text{ mA} \\ 43 \sim 44.7 \\ 50 \text{ cycle} \\ 15 \text{ m} \\ 2 \text{ cc/min} \\ 100 \ ^{\circ}\text{C} \\ 27 \ ^{\circ}\text{C} \\ 500 \end{array}$
$\begin{array}{c} 3851 \text{ V} \\ 2800 \text{ V} \\ 20 \text{ V} \\ 3900 \text{ mA} \\ 43 \sim 44.7 \\ 50 \text{ cycle} \\ 15 \text{ m} \\ 2 \text{ cc/min} \\ 100 \ ^{\circ}\text{C} \\ 27 \ ^{\circ}\text{C} \\ 500 \\ 500 \\ \mu\text{L} \end{array}$

表 4.1: infiTOF, GC のパラメータ

 $N_2O \text{ on RSD}$ は19.3%となった. つまり,測定精度は,±67.6 ppbv である. N_2O の大気 レベル濃度の測定には,最低限±52.5 ppmv (RSD: 15%)の測定精度が必要とされ [25], 不十分である. これは,サンプル量が不十分で,マススペクトルピーク形状の再現性が低下 し,ソフトウェアで重心値や半値全幅を判定することが困難になっていることがあげられる. 研究室内の大気を測定して得られた N_2O のマススペクトルピークを図 4.2 に示す.

図 4.2: 研究室内の大気を導入して得られた N₂O のマススペクトル

図4.2より、イオン量が不十分なため、N₂Oのマススペクトルピークが歪んだ形状になっていることが分かる、よって、ソフトウェアで重心値や半値全幅を決定することが困難となっている(図4.3の(a)).これが、安定したピーク面積値が得られくなっている要因である.これを解決するためには、イオン量を増加させる必要がある.

図 4.3: ソフトウェアの自動解析による重心値,半値全幅の決定のイメージ図

4.2 サンプルインジェクション量の変更による再現性の向上

4.2.1 サンプルループ 200 µL での再現性

イオン量を増やすために、サンプルのインジェクション量そのものを増加させる。サンプ ルループの体積を 50 μ L から 200 μ L に増やし、研究室内の大気中の N₂O の測定を行った。 表 4.2 に示す条件で、1 分間隔で 10 回測定した。得られたピーク面積値の RSD を図 4.4 に 示す。

サンプルループの体積が 200 μ L のときの研究室内の大気中の N₂O の RSD は 11.3 %と なった.サンプルループの体積が 50 μ L の場合(図 4.1)と比較して, N₂O の RSD が 20 % \rightarrow 11%と向上した.これは、サンプルインジェクション量を 4 倍(50 μ L \rightarrow 200 μ L)とし、 イオン量が約 4 倍になることで、RSD が $\sqrt{4} = 2$ 倍になったためであると考えられる.

Injection outer voltage	1144.5 V
Injection inner voltage	-1190.5 V
Ejection outer voltage	975.5 V
Ejection inner voltage	-1086.5 V
Orbit outer voltage	1082.5 V
Orbit inner voltage	-1279.5 V
V _{matsuda}	$560 \mathrm{~V}$
V _{float}	3291 V
V_{push}	974 V
V_{einzel}	3851 V
Detector voltage	2800 V
Vion	20 V
Filament current	3900 mA
Mass range	$43 \sim 44.7$
Cycle condition	50 cycle
Length of column	15 m
Gas flow	2 cc/min
Ion source temperature	100 °C
Column temperature	27 °C
Repetition time	500
Sample volume	$200 \ \mu L$
Sample	Air
Sample times	$1 \min \times 10$

表 4.2: infiTOF, GC のパラメータ

図 4.4: サンプル量 200 µL での研究室内の大気中の N₂O のピーク面積値の RSD

4.2.2 ダイリューションシステムを利用した検量線の作成

サンプルループの体積を 200 μ L に変更することで、目標に設定した N₂O の RSD: 15 %を 達成することができた.次に、ガスの濃度を定量するため、ピーク面積値と濃度の関係(検 量線)を得る必要がある.N₂O の検量線を作成するために 30 ppmv の N₂O(N₂ ベース、 DAIHOSANGYO Inc., Tokyo, Japan)にエアーコンプレッサー(Air Compressor PC4-10H, YAEZAKI KUATSU Inc., Tokyo, Japan)で作成した乾燥空気を用いて希釈を行い、 N₂O が順に 4.33 ppmv, 1.70 ppmv, 0.35 ppmv(大気レベル)のサンプルガスを作成し た.希釈は、ダイリューションシステムを使用した。ダイリューションシステムでは、マスフ ローコントローラー(SEC-E40, HORIBA STEC, Kyoto, Japan)(FCST1005, FUJIKIN Inc., Osaka, Japan)(8500MC/MM, KOFLOC Inc., Kyoto, Japan)を2つ使用し、ガ スの流量を調整することで希釈する。図 4.5 にダイリューションシステムの概略図を、図 4.6 に実際の写真を示す.

図 4.5: ダイリューションシステムの概略図

図 4.6: ダイリューションシステムの写真

表 4.2 に示す条件で, N₂O サンプルの濃度を変えながら 1 分間隔で 40 回測定した.得ら れたピーク面積値の推移を図 4.7 に,検量線を図 4.8 に示す.

図 4.7 より,最初の数回の測定結果にばらつきがあることが分かる.この原因について, 「バルブの慣らし」があげられる.一般的には,六方バルブを使用して測定を行う場合,サ ンプルインジェクションの前に何度も空打ちを行い,六方バルブのリンスが行われる.実際 に図 4.7 の結果からも分かる通り,サンプルインジェクションの回数が増えるにつれて再現 性が上昇している.以上より,今後は最初の数回のデータを除いてデータの解析を行うこと にする.

図 4.8 の検量線の R² 値が 0.955 となっている。R² 値は決定係数と呼ばれ、以下のように 定義される。

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - f_{i})^{2}}{\sum_{i} (y_{i} - \bar{y}_{i})^{2}}$$
(4.3)

 y_i , \bar{y}_i , f_i はそれぞれピーク面積値, ピーク面積の平均値, 回帰直線上の値である.

図 4.7: N₂O を濃度変化させたときのピーク面積値

図 4.8: 200 µLの大気をインジェクションしたときの N₂Oの検量線

サンプルループの体積を 200 μ L にすることで N₂O の RSD: 15 %を達成し、大気レベル 濃度(350 ppbv)から 4 ppmv までの線形性を示すことができた.

しかし、サンプルインジェクション量を増やすことによって、イオン源へのサンプルガス 導入量が増え、イオン源の真空度が悪化するという問題が発生した。特に、N₂、O₂がイオ ン源に導入される時間では、イオン源の真空度が約 1.0 × 10⁻¹ Pa まで上昇し、現状イオ ン源に印加している電圧値では放電を起こす危険性がある。現状ではこの問題は解決できな いため、他の手法を考える必要がある。

4.3 カウンティング法

微少量のイオンを測定する方法として、パルスカウンティング法と呼ばれる手法がある. 検出器から得られたアナログ信号をそのまま読み取るのではなく、TDC(Time-to-Digital Convereter)を用いて一定以上のレベルの信号が来た場合を1とカウントし、その時間を 記録していく方法である。質量分析計を使用した微量物質の検出法として一般的に用いら れている[26].本研究ではこのパルスカウンティング法を応用し、TDC ではなく高速 ADC (高速デジタイザー)で計測されたスペクトルをソフトウェア解析し、カウンティングを行 うことで、N₂、O₂、CO₂、N₂Oの同時測定を試みた。

4.3.1 原理

2.4.3 節でも述べた様に,測定の繰り返し1 kHz で,検出器 (14880, ETP Electron Multipliers, Ermington, Australia) からのシグナルは,デジタイザー (U5303A PCle 12-bit High-Speed Digitizer, Keysight Technologies Inc., CA, USA) で取得される. オープンソー スソフトウェア QtPlatz[24] を用いて,このスペクトルの中のピークに対して閾値を設定し, 閾値とシグナルのたち下がりとの交点における飛行時間を記録する. この飛行時間を横軸と してヒストグラムを作成し,保持時間ごとのカウント値を求める. 図 4.9 にカウンティング 法のイメージ図を示す.

図 4.9: カウンティング法のイメージ図

この手法には2つ利点がある.1つ目は,従来のTDCと異なり,デッドタイムがないこ とである.通常のTDCでは,ピーク検出すると10 ns ほどのデッドタイムがある.イオン 1個が検出器に衝突した時に得られる信号は約1 ns の幅である.一方, N₂Oのm/z 44の ピークの半値全幅は約8 ns ある.TDCでは,このピークの中に複数イオンがきた場合に複 数カウントすることが不可能である.しかし,この手法では複数カウントできる可能性があ る.2つ目はカウンティングとアナログ検出両方のデータを得られることである.アナログ 検出されたデータをカウンティング処理しているため,イオンの量が多ければ,カウンティ ング処理をせず,アナログ検出されたデータを使用できる.つまり,ダイナミックレンジが 広がる.

4.3.2 研究室内の大気中の N₂O の再現性

カウンティング法を用いて研究室内の大気中の N_2O の測定を行った.表4.3 に示す条件で, 1 分間隔で 15 回測定した. N_2 , O_2 , CO_2 , N_2O を同時に測定するため, サンプルループの 体積を 200 μ L から 50 μ L に戻し, 1 つのイオンが検出器に衝突したときの信号強度を増幅 させるため,高速前置増幅器 (Model 9301 Fast Preamplifier, Ortec Inc., CA, USA) を 付けた.得られたカウント数の RSD を図 4.10 に, N_2O 保持時間でのヒストグラムを図 4.11 に示す.4.2.2 節でも述べた通り,バルブ慣らしのために最初の 5 回のデータは無視する.

 N_2O のRSDは、8.7%となった。カウント数の相対標準偏差RSD_cを、カウント数Nと

Injection outer voltage	1117.5 V
Injection inner voltage	-1191.5 V
Ejection outer voltage	970.5 V
Ejection inner voltage	-1086.5 V
Orbit outer voltage	1082.5 V
Orbit inner voltage	-1279.5 V
$V_{matsuda}$	560 V
V _{float}	3369 V
V_{push}	954 V
V_{einzel}	3751 V
Detector voltage	2800 V
V_{ion}	60 V
Filament current	3900 mA
Mass range	$43 \sim 44.7$
Cycle condition	50 cycle
Length of column	15 m
Gas flow	2 cc/min
Ion source temperature	100 °C
Column temperature	27 °C
Threshold	-20 mV
Repetition time	200
Sample volume	$50 \ \mu L$
Sample	Air
Sample times	$1 \min \times 15$

表 4.3: infiTOF, GC のパラメータ

その標準偏差 √N を用いて以下のように定義する.

$$\operatorname{RSD}_{c} = \frac{\sqrt{N}}{N} \times 100 = \frac{100}{\sqrt{N}}$$
(4.4)

したがって,今回のカウント数からのRSD_cは9.1%で,測定で得られたRSD:8.7%が統計誤差で説明できることを示している.

図 4.10: カウンティング法を用いた研究室内の大気中の N₂O のカウント数の RSD

図 4.11: N₂Oの保持時間でのヒストグラム

研究室内の大気中の N₂O のマスクロマトグラムピークにおけるイオンのカウント数は 120 個,アナログ検出時のノイズの peak to peak 値は 240 mVp-p である. 1イオンの信号強度 は約 60 mV であるため,アナログ検出した際に全てのイオンが同じ飛行時間に検出された 場合の S/N 比は 60 × 120 / 240 = 30 となる (図 4.12 (a)). しかし,実際のマススペク トルの信号では,飛行時間のばらつき (半値全幅: 8 ns 程度) が存在するため,シグナルが 約 10 %に減少し, S/N 比 \simeq 3 となり,定量が困難になる (図 4.12 (b)).

図 4.12: イオンが検出される飛行時間がばらつくことによる影響

4.3.3 アナログ検出とカウンティング法の比較

アナログ検出とカウンティング法との比較を行うため、それぞれの手法で検量線を引いた。 N_2O の検量線を作成するために、図 4.6 のダイリューションシステムを使用して、30 ppmvの N_2O (N_2 ベース, DAIHOSANGYO Inc., Tokyo, Japan) と高純度 N_2 (99.999%, Neriki Gas Inc., Hyogo, Japan)を混合させて希釈を行い、 N_2O が順に 0.5 ppmv, 0.6 ppmv, 0.7 ppmv, 0.8 ppmv, 0.9 ppmv, 1.0 ppmv, 1.5 ppmv, 2.0 ppmv, 2.5 ppmv, 3.0 ppmv のサンプルガスを作成した。表 4.3 に示す条件で、 N_2O サンプルの濃度を変えながら 1 分間隔で 150 回測定した。さらに、アナログ検出とカウンティング法を比較するため、ア ナログ検出で得られたピーク面積値とカウンティング法で得られたカウント数の面方のデータを取得した。アナログ検出で得られたピーク面積値の推移を図 4.13 に、カウンティング 法で得られたカウント数の推移を図 4.14 に、アナログ検出での検量線を図 4.15 に、カウンティング法での検量線を図 4.16 に示す。

図 4.13: アナログ検出で N₂O を濃度変化させたときのピーク面積値

図 4.14: カウンティング法で N₂O を濃度変化させたときのカウント数

図 4.15: アナログ検出での N₂O の検量線

図 4.16: カウンティング法での N₂O の検量線

図 4.13, 図 4.14 より,カウント数が 600 counts をこえるまでは,アナログ検出と比較して,カウンティング法が優位にあるといえる.

図 4.16 より,濃度が増加するにつれてカウント数の増加率が少しずつ減少していること が分かる.これは、カウンティング法特有のイオンが複数同時に来た影響だと考えられる. イオンが複数同時に来た確率を (イオンの数 トリガーの数)ⁿ と仮定し、この式を用いてこの検量線を補正 した結果と 0.5~1.0 ppmv までの直線近似式を図 4.17 に示す.図 4.17 の補正式の N₂O: 3 ppmv (イオンが多数検出される)の場合の値と、実際の計測値を比較すると、約6%補正 式の値が少ない.これは、4.3.1 節で述べた様にデッドタイムがないため、N₂O のピーク幅 (約8 ns)の中の複数イオンを複数カウントできる可能性が存在する影響だと考えられる.

図 4.17: カウンティング法での 0.5~1.0 ppmv までの N₂O の検量線と補正式

次に、よりイオンの量を減らして、アナログ検出とカウンティング法の比較を行った.図 4.6 のダイリューションシステムを使用して、500 ppbv の N₂O(Air ベース、Neriki Gas Inc., Hyogo, Japan)と高純度 N₂(99.999 %, Neriki Gas Inc., Hyogo, Japan)を混合さ せて希釈を行い、N₂O が順に 500 ppbv, 400 ppbv, 300 ppbv, 200 ppbv, 100 ppbv, 50 ppbv のサンプルガスを作成し、アナログ検出で得られたピーク面積値とカウンティング法 で得られたカウント数の両方のデータを比較した.表 4.3 に示す条件で、N₂O サンプルの濃 度を変えながら 1 分間隔で 90 回測定した.アナログ検出時の積算回数は 200 回である.ア ナログ検出で得られたピーク面積値の推移を図 4.18 に、カウンティング法で得られたカウ ント数の推移を図 4.19 に、アナログ検出での検量線を図 4.20 に、カウンティング法での検 量線を図 4.21 に示す.

図 4.18: アナログ検出で N₂O を濃度変化させたときのピーク面積値

図 4.19: カウンティング法で N₂O を濃度変化させたときのカウント数

図 4.20: アナログ検出での N₂O の検量線

図 4.21: カウンティング法での N₂O の検量線

N₂O の濃度が大気レベル濃度(350 ppbv)以下になると、アナログ検出とカウンティン グ法の RSD がそれぞれ、8.4 %、3.8 %(300 ppbv)、18.3 %、11.6 %(200 ppbv)、16.4 %、13.0 %(100 ppbv)、37.8 %、16.8 %(50 ppbv)となっており、イオンの数が少ない 場合によりカウンティング法が有用であることを確認できた。N₂O の濃度 100 ~ 500 ppbv までを RSD: 15 %で測定可能である。

図 4.16 と図 4.21 の検量線を比較すると(図 4.22),傾きや N₂O: 0.5 ppmv におけるカ ウント数が大きく異なる.図 4.22 の青色が N₂O: 30 ppmv / N₂ ベース,図 4.22 の赤色が N₂O: 500 ppbv / Air ベースをそれぞれ,高純度 N₂ で希釈している.この原因を解明するた め,N₂O: 30 ppmv のガスを高純度 N₂ と標準空気(N₂: 78 % O₂: 22 %, Neriki Gas Inc., Hyogo, Japan) でそれぞれ希釈して N₂O: 500 ppbv のサンプルガスを作成し,N₂O: 500 ppbv のガスボンベとの比較を行った.表 4.3 に示す条件で,N₂O: 500 ppbv のサンプルガ スをそれぞれ 1 分間隔で 15 回測定した.測定結果を図 4.23 に示す.

図 4.22: 図 4.16 (青) と図 4.21 (赤)の検量線の比較

53

図 4.23: N₂O:500 ppbv の希釈ガスの違いによるカウント数

高純度 N₂ で希釈を行った場合は,500 ppbv のガスの約 2 倍のカウント数が得られており,標準空気で希釈を行った場合は,500 ppbv のガスとほぼ同じカウント数(差:8%)が得られている.

原因は現時点では不明であるが、ダイリューションを行う場合は、大気条件に近い形で希 釈する必要がある.

第5章 土壌起源ガスの多成分同時測定

5.1 測定条件切り替え時間の見直し

先行研究 [14] より、土壌から発生するガスを 200 mL フラスコを用いたクローズドチャン バー法で測定した結果、CO₂、N₂O がそれぞれ 300 ~ 8000 ppmv、0.35 ~ 10 ppmv まで増 加することが確認されている。したがって、表 3.3 の測定条件では CO₂ のアナログ信号が 濃度の増加につれて飽和する可能性がある。そこで、Carbon-PLOT カラム 15 m では CO₂ と N₂O が分離可能であることを利用し、CO₂ を検出器電圧 2150 V で測定後(0.59 分)に 条件を 2800 V に切り替え、N₂O の測定を行う方法を採用した。測定条件は表 5.1 に示す通 りである。また、実際に得られたマスクロマトグラムを図 5.1 に示す。

図 5.1: 0.59 分で測定条件を切り替えたときに得られる CO₂, N₂O のマスクロマトグラム

測定条件は 0.9 秒で切り替えることができている.ただし, CO₂ と N₂O の保持時間の差 が1 秒以下であるため,カラムの温度変動によって保持時間が変化した場合,測定条件の切 り替えがうまくいかない可能性が高い.この問題を解決するために,循環式高温水槽(サー マックス TM-1, AS ONE Corporation, Osaka, Japan)を使用し,カラムの温度を一定に 保つことで,保持時間を安定させた.

	測定条件1(N ₂ , O ₂ , CO ₂ ,)	測定条件 2(N ₂ O)	
Injection outer voltage	1117.5 V		
Injection inner voltage	-1191.5 V		
Ejection outer voltage	970.5 V		
Ejection inner voltage	-1086.5 V		
Orbit outer voltage	1082.5 V		
Orbit inner voltage	-1279.5 V		
V _{matsuda}	560 V		
V _{float}	3369 V		
V _{push}	954 V		
Veinzel	3751 V		
Detector voltage	2150 V	2800 V	
Vion	60 V		
Filament current	3900 mA		
Mass range	$10 \sim 60$	$\textbf{43.0} \sim \textbf{44.7}$	
Laps	Linear	50 cycle	
Length of column	15 m		
Gas flow	$2.0 ext{ cc/min}$		
Ion source temperature	100 °C		
Column temperature	32 °C		
Repetition time	100		
Threshold	-20 mV		
Sample volume	$50 \ \mu L$		
Sample	Air		

表 5.1: infiTOF, GC のパラメータ

5.2 Nafion dryer を用いた除湿

大気中の N₂O の測定実験 [27][28] では、測定の際に水分を除去するため、Nafion dryer (MD110, PermaPure Inc., NJ, USA) と過塩素酸マグネシウムが用いられる. しかし、過 塩素酸マグネシウムは N₂ などの不活性ガスを吸着することが確認されており、今回の測定 にはふさわしくない. そこで、Nafion dryer のみを使用する. Nafion dryer とは、吸湿性 の樹脂膜 (Nafion tube) を利用して、水蒸気の分圧差によって水分を除去するガスドライ ヤーである. 利点として、N₂、O₂、CO₂、N₂O の損失無しで除湿できることがあげられる. Nafion dryer の概略図を図 5.2 に、実際の写真を図 5.3 に示す.

図 5.2: Nafion dryer の概略図

図 5.3: Nafion dryer の写真

Nafion dryer の有無による研究室内の大気中の H_2O のマスクロマトグラムのピーク面積 値の違いを図 5.4 に、Nafion dryer の有無による N_2O の RSD の違いを図 5.5 に示す。表 5.1 に示す条件で、1 分間隔で 15 回測定した。

図 5.4: Nafion dryer の有無による H₂O のピーク面積値の違い

図 5.5: Nafion dryer の有無による N₂O の RSD の違い

Nafion dryer を使用することで、 $H_2O \ge 1/3$ にカットできることを確認した. また、除 湿したことにより、RSD が向上している.大気をサンプルガスとして使用した際に、乾燥 空気やガスボンベをサンプルガスとして使用した際と比較して、同じ濃度であるにも関わら ず RSD が悪化していた原因は、水蒸気による影響だと考えられる(図 4.19 のガスボンベで 希釈された N₂O: 300 ppbv の RSD: 3.8 %、図 4.10 の大気中の N₂O: 350 ppbv の RSD: 8.7 %).

5.3 N₂, O₂, CO₂, N₂Oの測定(測定システムの検証)

装置系の測定条件を全て決定できたため、 N_2 , O_2 , CO_2 , N_2O の測定を実際に行い,濃 度変動を捉えられるかの検証をした. 三角フラスコ (350 mL)を用意し、フラスコ内で意 図的な濃度変動を起こしながら測定を行った. 濃度変動は、高純度 N_2 (99.999 %, Neriki Gas Inc., Hyogo, Japan)を用いて、フラスコ内を窒素に置換する手法を採用した.表 5.1 に示す条件で、1 分間隔で 60 回行った.途中(15 分後)から高純度 N_2 を 250 mL/min で 15 分間流し続け、フラスコ内を窒素に置換し、その後は高純度 N_2 の流路を閉じ、 N_2 , O_2 , CO_2 , N_2O が次第に大気濃度に戻るようにした.実験の概要図を図 5.6 に、 N_2 , O_2 , CO_2 , N_2O の測定結果を図 5.7 に示す.

図 5.6: 意図的な濃度変動を起こす実験の概要図

図 5.7: N₂, O₂, CO₂, N₂O のピーク面積値, カウント値の変動

高純度 N₂でフラスコ内が置換されることで、N₂が増加し、O₂、CO₂、N₂Oが減少している様子を確認できた.また、高純度 N₂の流路を閉じることによって、N₂、O₂、CO₂、N₂O が次第に大気レベル濃度に戻っていく様子を確認できた.フラスコの体積と高純度 N₂の流 量を考慮すると 350 / 250 \simeq 2 分でフラスコ内が置換されるはずであるが、実験結果(図 5.7)では、5 \sim 6 分の時間を要している.この原因として、フラスコを大気解放しているこ と、サンプリングライン(サンプルループとそれに接続された配管)の置換に時間を要する ことがあげられる.サンプリングラインの置換の問題は、ダイアフラムポンプでサンプルを 導入する時間を長くすることによって解決できる.しかし、土壌ガスの測定においてサンプ ル導入量を増加させることは、培養器や捕集チャンバー内が減圧され、土壌から余分なガス が放出される要因となるため好ましくない.また、フラスコ内が高純度 N₂ に入れ替わって いる間(22 \sim 30 分)、O₂、CO₂ はピーク面積値が0になるが、N₂O は0 になっていない. これは、N₂O がイオン1 個から検出できるカウンティング法を用いてるため、イオン源内 の残留ガス中に含まれる N₂O を検出していると考えられる.

5.4 検量線 (N_2 , O_2 , CO_2 , N_2O)

土壌から発生するガスを測定する前に、ガス濃度を決定するためN₂, O₂, CO₂, N₂Oの 検量線を作成する.4.3.3節で述べたように、大気条件に近い形で希釈を行う必要がある.そ こで、大気との混合で希釈を行う新しいダイリューションシステムを製作した.図 5.8 に新 しいダイリューションシステムの概略図を、図 5.9 に実際の写真を示す.

表 5.1 に示す条件で,先行研究 [14] において,土壌から発生するガスをクローズドチャン バー法を用いて計測した際の観測された濃度範囲(N₂: 78 ~ 100 %, O₂: 2 ~ 21 %, CO₂: 400 ~ 8000 ppmv, N₂O: 0.35 ~ 10 ppmv)で N₂, O₂, CO₂, N₂O の濃度を変えながら 1 分間隔で測定を行った. N₂, O₂, CO₂, N₂O それぞれのピーク面積値・カウント数の推移 と検量線を図 5.10, 図 5.11, 図 5.12, 図 5.13, 図 5.14, 図 5.15, 図 5.16, 図 5.17 に示す.

4.3.3 節で述べた様に,カウンティング法を用いている N₂O は,濃度が増加するにつれて カウント数の増加率が減少する.このことを考慮し,検量線を引いた.

図 5.8: 新しいダイリューションシステムの概略図

図 5.9: 新しいダイリューションシステムの写真

図 5.10: N₂を濃度変化させたときのピーク面積値

図 5.11: N₂の検量線

図 5.12: O₂ を濃度変化させたときのピーク面積値

図 5.13: O₂の検量線

図 5.14: CO₂ を濃度変化させたときのピーク面積値

図 5.15: CO₂の検量線

図 5.16: N₂O を濃度変化させたときのカウント数

図 5.17: N₂Oの検量線

5.5 土壌から発生する N_2 , O_2 , CO_2 , N_2O の同時連続測定

5.5.1 通気型非定常チャンバー法

土壌から発生するガスの測定方法として、クローズドチャンバー法[7]について述べた.こ の手法は完全閉鎖系であるため、高頻度なガスサンプリングを行うとチャンバー内が真空と なり、土壌サンプルから余分なガスが放出され、正確な量を知ることができない.そこで、 この欠点を軽減するために通気型非定常チャンバー法(opened unstable chamber method) [29]を利用した.この手法はチャンバーに流入出口をとりつけ、チャンバー内を長い時間を かけて換気しながらチャンバー内濃度を測定する方法である.利点としては、ガスがチャン バー内にたまるため濃度の変動が大きくなること、ガスサンプリングをした分だけ外気が導 入され大気圧が保たれることがあげられる.通気型非定常チャンバー法の概略図を図 5.18 に、実際の写真を図 5.19 に示す.

図 5.18: 通気型非定常チャンバー法の概略図

図 5.19: 通気型非定常チャンバー法の写真

通気型非定常チャンバー法において、チャンバー内のガス濃度の変動 Δ*C* を表す式は以下 のようになる.

$$\frac{F \times S \times \Delta t}{V} - C \times \frac{v \times \Delta t + x}{V} + C_0 \times \frac{v \times \Delta t + x}{V} = \Delta C$$
(5.1)

Fはフラックスと呼ばれ、土壌から放出・吸収されるガスの量 [mg m⁻² h⁻¹] を表す. S は チャンバーの底面積 [m²], V はチャンバー内の容積 [m³], Δt は測定時間 [hr], C はチャン バー内のガス濃度 [ppmv], C₀ は外気のガス濃度 [ppmv] (N₂O の場合 0.35 ppmv), ΔC は 濃度変動 [ppmv], v は排気速度 [mL/min], x はサンプリングライン全体の体積 [mL] であ る.式 5.1 よりフラックス F は

$$F = \frac{V}{S} \times \left\{ (C - C_0) \times \frac{v}{V} + (C - C_0) \times \frac{x}{V \times \Delta t} + \frac{\Delta C}{\Delta t} \right\}$$
(5.2)

と表せ、土壌からのガスの発生量を求めることができる.

5.5.2 土壌ガスの測定

土壌に水が添加されることによって、N₂O の増加が確認されている [30][31]. そこで、北 海道大学北方生物圏フィールド科学センター耕地圏ステーション静内研究牧場内のトウモロ コシ畑の土壌試料 30 g に水を添加し、通気型非定常チャンバー法を用いて濃度変動を測定 した(温度: 22.8 °C,湿度: 22.0 %).測定開始 20 分後に蒸留水 15 mL を添加した.表 5.1 に示す条件で、1 分間隔で 60 回測定した.図 5.20 に測定結果を示す.1時間経過した場合 のピーク面積値、カウント数の変動が1 %以内であるため、縦軸は 5.4 節で作成した検量線 を用いてピーク面積から濃度へと変換している.

図 5.20: 測定開始 20 分後に水を添加した際の N₂, O₂, CO₂, N₂O の濃度変化

N₂, O₂, CO₂の6, 7, 8回目のデータが同じ挙動で変化している. この時間のアインツェ ル電圧に異常が発生していることを確認できたため,これらのデータを除外して考察を行 う.水を添加する前の20分間はN₂, O₂, CO₂, N₂Oともに濃度が一定であるが,蒸留水 を添加した直後からCO₂とN₂Oの濃度が増加した. CO₂の濃度は10分間で約3倍の濃度 に増加し,その後は大気が流れ込むにつれて減少した. N₂Oの濃度は40分間徐々に増加し た. N₂, O₂は一定の値を示した. 先行研究では不可能であった大気レベル濃度(350 ppbv) から 600 ppbv までの N_2O を \pm 20 ppbv で測定することができている.

図 5.20 から求められる測定時間 10 ~ 60 分までの N₂, O₂, CO₂, N₂O のフラックスの 変動を図 5.21 に示す.

図 5.21: 測定開始 10 分 ~ 60 分の N₂, O₂, CO₂, N₂O のフラックスの変動

N₂は水を添加した前後でフラックスに変動は見られなかった。O₂は水の添加後から少し ずつ消費されている。CO₂は水の添加直後から大量に放出されている。この放出は8分程 でおさまり、15分かけてゆるやかに減少する。その後はCO₂が放出されていない。N₂Oは 水の添加後から放出量がゆるやかに増加し、30分経過した後からゆるやかに減少している。

 O_2 の消費や CO₂, N₂O の生成から水添加後にバクテリアが活動的になっていることを確認できる.今回の N₂O の放出は脱窒によって行われていたと考えられる.アンモニアから硝酸への変換が行われる硝化の場合も N₂O が放出されるが,硝化過程には半日以上の時間を要することが確認されているため [14],今回の N₂O の放出は硝化由来ではないと考えられる.なお,脱窒過程であるにもかかわらず,N₂の放出が確認できない理由として,二つの原因が考えられる.一つ目は,N₂O や CO₂の生成量(ppmb, ppmv オーダー)が,N₂の濃度(78%)と比較して極微量であり,かつ N₂の測定誤差(±1%)がその変化を捉え

られていないと考えられる.二つ目は、 N_2O から N_2 への変換が進行しなかった可能性である。 N_2O から N_2 に変換されるためには、無酸素である必要がある。実際に、蒸留水添加によって土の隙間が水で満たされ、嫌気状態の部位が生じ、脱窒が進むことが確認されている [32].今回の場合は、乾燥した土壌を使用していたため、土の隙間が水で満たされにくく、 N_2 の放出にはもう少し時間が必要であったと考えられる。
第6章 まとめと今後の課題

GC/MS (小型マルチターン飛行時間型質量分析計)を用いて、土壌から発生するガス (N₂, O₂, CO₂, N₂O)の同時連続測定を可能にするため、GC で試料が分離された時間 (保持時間)ごとに測定条件を変更する自動測定システムの開発および N₂O の測定手法の構築を行った.

先行研究では、 N_2 , O_2 , CO_2 , N_2O を測定するため、サンプルガスを2回インジェクショ ンし、 N_2 と O_2 の測定条件、 CO_2 と N_2O の測定条件を切り替え、計測を行う必要があった. そのため、測定条件によって異なるサンプルを計測することになり、 N_2 , O_2 , CO_2 , N_2O の 定量的な相関が得られないという課題があった.また、大気レベル濃度(350 ppbv)の N_2O が微量であるため、高精度で定量することが困難であり、土壌から発生する N_2O によって 大気中の N_2O の濃度が1 ppmv以上になった場合を対象として測定が行われていた.

これらの課題を解決するため、 N_2 , O_2 , CO_2 , N_2O の保持時間ごとに測定条件(検出器 電圧・周回条件)を切り替えるシステムを構築し、 N_2 , O_2 , CO_2 , N_2O ガスについて1回 のインジェクションでの測定を可能にした。そして、カウンティング法を用いることによっ て、350 ppbv から 600 ppbv までの N_2O の濃度変動を ± 20 ppbv の測定精度で測定できた。

課題としては、装置系を外に持ち出した場合のピーク面積値・カウント値の安定性の評価 があげられる.これらの課題を解決することで、現場での測定が可能になると考えられる.

参考文献

- [1] 山根一郎 (1988) 『土と微生物と肥料のはたらき』 p196 農山漁村文化協会.
- [2] M. Hayatsu, K. Tago, M. Saito, *SoilSci.PlantNutri.*, **54**, 33 (2008).
- [3] J. Wijler, C. C. Delwiche, *PlantandSoil*, 5, 155 (1954).
- [4] J. M. Bremner, A. M. Blackmer, *Science*, **198**, 4326, 295 (1978).
- [5] IPCC (intergovernmental Panel on climate Change), (2001). The Scientific Basis. Cambridge: Cambridge University Press.
- [6] A. R. Ravishankara, John S. Daniel, Robert W. Portmann, Science, 123, 326, 123, 123-125 (2009).
- [7] Y. Toma, R. Hatano, SoilScienceandPlantNutrition. 53, 198-205 (2007).
- [8] K. Kusa, T. Sawamoto, R. Hatano, Nutrient Cycling in Agroecosystems, 63, 239-247 (2002).
- [9] 大浦典子, 農環研報 27, 1-84 (2010)
- [10] H. Akiyama, H. Tsuruta, T. Watanabe, *Chemosphere.*, **2**, 313 (2000).
- [11] P. Ineson, P. A. Coward, U. A. Hartwig, *PlantSoil.*, **198**, 89 (1998).
- [12] S. Shimma, H. Nagao, J. Aoki, K. Takahashi, S. Miki and M. Toyoda, Anal. Chem., 82, 8456-8463 (2010).
- [13] S. Shimma and M. Toyoda, Greenhouse Gases Emission, Measurement and Management, Dr Guoxiang Liu (Ed.), ISBN: 978-953-51-0323-3, InTech, Chapter 11, 235-254 (2012).
- [14] T. Anan, S. Shimma, Y. Toma, Y. Hashidoko, R. Hatano, M. Toyoda, Environmental Science : Processes & Impacts, 16, 2752 - 2757 (2014).

- [15] K. Isobe, K. Koba, S. Ueda, K. Senoo, S. Harayama and Y. Suwa, J.Microbiol.Methods., 84, 46 (2011).
- [16] W. P. Poschenrieder, J.MassSpectrom.andIonPhys., 9, 357 (1972).
- [17] B. A. Mamyrin, V. I. Karataev, D. V. Shmikk, and V. A. Zahulin, Zhurnal Eksperimental' noi: Teoreticheskoi Fiziki, 64, 82 (1973).
- [18] W. C. Wiley, I. H. McLaren, *Rev* : *Instr* :; **26**, 1150 (1955).
- [19] M. Ishihara, M. Toyoda, T. Matsuo, Int.J.MassSpectrom., 197, 179 (2000).
- [20] L. R. Snyder, J. J. Kirkland (1979). Introduction to modern liquid chromatography second edition. A Wiley-Interscience Publication.
- [21] H.Matsuda, *RevSciInstrum.*, **32**, 850 (1961).
- [22] F. H. Read, Jornal of Scientific Instruments 2, 2 (1969).
- [23] K. C. Cloos, T. Hondo, J. Chromatogr. B, 877, 4171-4174 (2009).
- [24] http://qtplatz.ms-cheminfo.com/tiki-index.php
- [25] Shah et al, *Pharm. Res.* **17**, (12), 1551-1557 (2000)
- [26] Y. Rosenthal, M. P. Field and R. M. Sherrell, Anal. Chem., 71, 3248-3253 (1999).
- [27] C. J. Jorgensen, S. Struwe, B. Elberling, Global Change Biology, 18, 210-222 (2012).
- [28] T. C. Hsu and S. J. Kao, *Biogeosciences*, 10, 7847-7862 (2013).
- [29] 小谷廣通,小前陽,松岡知美,須江春香,農業農村工学会全国大会講演要旨集 (2012).
- [30] Y. Hashidoko, F. Takakai, Y. Toma, U. Darung, L. Melling, S. Tahara, R. Hatano, SoilBiol.Biochem., 40, 116 (2008).
- [31] C. Liu, X. Zheng, Z. Zhou, S. Han, Y. Wang, K. Wang, W. Liang, M. Li, D. Chen, Z. Yang, *PlantSoil*, **332**, 123 (2010).
- [32] J. R. Freney, O. T. Denmead, J. R. Simpson, SoilBiol.Biochem., 11, 167 (1979).

謝辞

本研究を行うにあたって、多くの方々から多大なるご支援、ご指導をいただきました.心 より感謝致します.指導教員の豊田岐聡先生には本研究テーマを与えていただき、質量分析 の基礎から論文執筆に至るまで懇切丁寧なご指導をいただきました.石原盛男先生には数値 計算や電気回路、実験方法について多くの有益な助言をいただきました.青木順先生には物 理に関する知識をはじめ、装置作りについてご助言をいただきました.本堂敏信博士にはソ フトウェア解析やコンピュータ言語、ガスクロマトグラフの基礎についてご指導をいただき ました.松岡久典氏には電気回路に関するご指導や、装置製作のご助言など、様々な点でお 世話になりました.大阪大学科学機器リノベーション・工作支援センターの古谷浩志先生に は実験方法から大気ガス測定方法の基礎について多くのご指導をいただきました.

また,北海道大学大学院農学研究院の波多野隆介先生には土壌試料を提供していただきました.愛媛大学農学部の当真要先生には土壌培養に関することをはじめ,土壌学に関する知識や実験方法の提案をしていただきました.深く感謝致します.

最後に,毎日のように研究生活を支えていただいた豊田研究室の皆さまに深く感謝致し ます.