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[ PntreducitEion

Particle analyzers, for example, mass spectrometers, B—ray spectrometers,
on-line mass separators, etc., are very useful instruments for the
investigation in nuclear science. With the recent progress of nuclear
physics in both theoretical and experimental aspects, more accurate and
new experiments which use particle analyzers are going to be required.

For such a purpose ion optical calculation plays an important role.

Many problems in ion optics are essentially reduced to those of solving
the equations of motion of a charged particle in the electromagnetic field
in a paraxial approximation and their results are usually expressed as the
form of transfer matrix similar to light optics.

The electric fields or the magnetic fields which are used as particle
analyzers have normally the property of axial symmetry with respect to some
center axis and also of mirror symmetry with respect to a plane perpendicular
to the center axis. The plane of symmetry is called the "median plane".
Along a circle in the median plane which is concentric to the axis of
rotation the field strength is expected to be constant, and therefore some
special particles can move along a circle having a radius of curvature Qo
because of the balance of centrifugal force and electromagnetic force.

Such a trajectory is called the "main path".

If we define the coordinates (x,y) and the angles of inclination «,B of

an arbitrary ray with respect to the main path (see fig.1,pl0) and assume the

quantities (%—, X—, o, B) are small compared to unity, the trajectory of
0

any arbitrary rasocan be expressed as a power series of these guantities
at the initial position, the coefficients of which being functions of the
position along the main path. Since ions in a group are expected to have
slightly different energy or momentum, the fifth quantity 6 (energy or
momentum deviation with respect to the main path particle) is necessary
in addition to the four qguantities described above.

In the early stage of ion optics, the instruments were designed using
the calculation in a first order approximation of five quantities (x, y, O,
B, 8), and the relevant ion optical calculations were published by many ‘

1)

authors™ .

2) and

In the next step the second order calculation were developed
on the basis of these results some examples of spectrometer system which
aim the second order focusing have been proposed. Many big machines have

been constructed but the results are not so good as expected in many cases.



In the high resolution mass spectrometer system, the energy focusing
is also necessary in addition to the directional focusing, and the perfect
second order focusing of this system is becoming important. The meaning
of "perfect" is that all the second order coefficients concerning with
angles and energy should be diminished.

When determining the atomic masses very precisely, peak matching
method is widely adopted for the measurement of mass difference of a mass
doublet.>

In this method the mass ratio of two component ions of doublet is
converted to the voltage ratio of the electrodes assuming that the
ﬁrajectories of two kinds of ions coincide exactly with each other. Even
if two ion beams are found at the same position at the detector, the
trajectories in the intermediate region may be different to each other and
some systematic error may be introduced. This is true if the double(angle
and energy) focusing is not complete, but the trouble will be eliminated if
the focusing is good. With the increase of the accuracy of measurement
the influence of the second order aberration can not be neglected.

In order to achieve the second order focusing it is necessary to
estimate the third order influence, because the remaining big effect comes
from third order terms after the second order terms are reduced.

The third order calculation makes it possible to estimate the second
order influence of the ion beam moving along the noncircular main path.

In the conventional calculations, it is expected that the central part of
the beam moves along the circular main path, i.e., the geometrical center

of the field. From the practical view point, however, the beam center may
take different path each time experimental condition is changed and in many
cases the beam center may not coincide with the circular geometrical center.

In order to get more complete and useful knowledge of final image
position and image aberrations, ion trajectory calculation under such cir-
cumstances that fit with the real experimental condition must be accomplished.

By using the results of third order calculation along normal circular
main path, above estimation relative to noncircular main path become possible
to the second order precision. Making good use of this nature inversely, an
excellent method can be derived theoretically how to reduce image aberrations
of the already fixed spectrometer system by changing the experimental

conditions , for example, the relative strength of the two fields.



With the advance of accelerator, it becomes possible to produce
many new nuclides that are far off the stability line. The number of such
nuclides is expected more than three thousands. In order to determine the
atomic masses of such nuclides, on-line mass spectrometer is considered to
be a suitable instrument. The instrument for such a purpose must possess
high resolving power, high luminosity and less aberrations. In this aspect
the third order calculation is very important and effective arms.

From the reasons described above, the author executeSthe third order
calculations of ion trajectory in both toroidal electric field and inhomo-
geneous magnetic field. The results are arranged in the form of transfer
matrix and the electric computer program for the calculation of third
order ion trajectory has been accomplished. The program works quite satisfactory

by only introducing the necessary parameters. The product of third order fringing
field matrices for the electric and magnetic field®) describes the radial motion
of charged particle through the real electric and maénetic sector field

order.

The way how to derive the new transfer matrix relative to noncircular main

path is also established including the computer program. Applying these
calculations to r_1 high resolution spectrometer in our laboratory we have

obtained the reasonable results about the focusing property.
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[2] Fermat's Principle and Path Equations in the Electromagnetic
Field

2.1. Variational Principles and Euler-Lagrange Equation

The use of superlative enables one to express in concise form a general

principle covering a wide variety of phenomena. The statement that a physical

system so acts that some function of its behavior is least (or greatest) is
often both the starting point for theoretical investigation and the ultimate
distillation of all the relationships between facts in a large segment of
physics. The mathematical formulation of the superlative is usually that the
integral of some function, typical of the system, has a smaller (or else
larger) value for the actual performance of the system than it would have for

any other imagined performance subject to the same very general requirements

which serve to particularize the system under study. We can call the integrand

J ; it is a function of a number of independent variables of the system
(generalized coordinates) and of the derivatives of these variables with
respect to the parameters of integration (generalized velocities). If the
variables are Y3, Yz, **°°°, wn' the derivaties ¢1', &2', ceces in' and

parameter X, then the integral which is to be minimized is

g: = JJ[ Yax), Palx), °°° wn(x). in (x) , "°ﬁ)n(x), X ]dg{( (2-1)

From the minimization of this function we can obtain the partial differential
equations governing Y's as functions of the X's. These differential equations

are derived according to the viriational method and are expressed as :

oJ d_aJ
—— - —(_.-) =0 , i=1,2' eeee n (2—2)
3wi dx 3¢i ,

These equations, which serve to determine the optimum functional form of

the Y's, are called the Euler-Lagrange differential equations.

2.2. Hamilton's Principle and Lagrange's Equation

We define a new function, the Lagrangian L, as

T -V ‘ | (2-3)

P
=
L]

identifying T with the system kinetic energy and V with the generalized
potential. When the system is conservative (in the larger sehse, admitting

generalized potential), the variational principle determines the equations of



motion, called "Hamilton's Principle". We can summarize Hamilton's principle
by saying the motion is such that the variation of line integral of L the

"Lagrangian" for fixed t1 and t2 is zero, i.e.,
t2 . .
&L = GJ L(qi, *** @, @1, *** g, £)dt = 0 (2-4)
t1 n n

Hamilton's principle has just the form stipulated in eq.(2‘2) with the

" transformations

J(wil lbi, X) g L(qil éi’ t)

The Euler-Lagrange equations then become as follows:

d oL oL _ . ceoee | - -
E(;—) - B_q— =0 i=1,2, n (2-5)
q5 1

This represents the well known "Lagrange's equations" which will determine

the équations of motion.

2.3. PFermat's Principle and Path Equation

Another variational principle associated with the Hamiltonian formulation

is known as the Fermat's principle. Which is defined as

S2
GI nds =0 (2-6)

s1
where n and ds represents ion optical refractive index and the arc lengﬁh of
the particle trajectory ,respectively. Then the term "n ds" equals optical
path. Fermat's principle states that of all paths possible between two points,
consistent with conservation of energy, the system moves along that particular
path for which the “"optical path" of transit is the least (more strictly, an
extremum) .

We will derive this principle from Hamilton's principle. At first we

introduce a new function H from Lagrangian by the Legendre transformation :

where p, = oL . ) - (2-8)

aéi



H is known as the "Hamiltonian" whose physical significance is that if L (and
in consequence of eq.(2-7), also H) is not an explicit function of t then H
is a constant of the motion. If potential energy is independent of velocity,
H is just equal to the total energy of the system.

Introduction of velocity - dependent potential into the Hamiltonian
formulation poses no formal difficulty, but it is no. longer clear whether H
represents the total energy. However, for the particular case of electro-
magnetic forces, the direct application of the definition of H, eq.(2-7)
proves that the Hamiltonian can still be written as a sum of kinetic and
potential energies.

The Lagrangian (nonrelativistic) for a single particle is
L=2m?-ed+e AV (2-9)
2 . .
with canonical momenta
p. = mv, + €A, ' : (2-10)
i i i . _

From the definition, H is given by

H = ):pivi - L
=mv? + e Ay - L ‘ (2-11)
or finally
1 2 »
H = 3 mv +ed =T+ ed ’ (2-12)

this represents the total energy of the particle.

2.4. Derivation of Fermat's Principle from Hamilton's Principle

Hamilton's principle equals :
t2
GJ Ldt=0 .
t
Expressing L in terms of the Hamiltonian by eq. (2-7)
t2 .

t2 .:.
'GJ z piqidt - GJ Hdt =0 . . - (2-13)
ty t1 :



"By eq.(2-12) H is conservative

t2
6JHdt=O .

t1-
Then tz- .
GJ Z piqidt.= 0
t1
° dqi
using the relation qidt v dt = dqi ’

GJ E pidqi =0 .

LetlJl, Uz' U3 be unit vectors in the direction dSl, dSé, dSs, respectively

then we have

oL 1 0L 1 0JL
Xa—.—dqi?Z’éj'g:—Qidqi=Z§f;1—dsi '
= ieoq; 1 cq,.
where Qi is a "scale factor" for the coordinate q -
On the other hand
i dat dt i%
V= V1U1 + V2U2 + V3Ua ’
Then v o= n? 4 vo? +vs? = i@ + Q2% + Q3®qs?

Introducing these results into eq. (2-9)

m L] L L]

L= 3~(Q12q;2 + 02%2q2% + 03%qs?) - ed®(q1, a2, qs)
+ e(Qiq1A1 + Q2q2A2 + Q3q3A3)

and oL 22 4 0.

T Tt

93

l__é%_ = mVi + eAi .

Qs ogq

" (2-14)

(2-15)

(2-16)

(2-17).

(2-18)

We define the unit vector in the tangential direction of path t as follows

_ dsi ds2 - dss
t—ds U1+ds U2+ds Us

(2-19)



Introducing eq. (2-18) into eq.(2-15) .

2
z pidqi = z (mvi + eAi)dsi
dS dsi — L
= z (mv -(E—- + eA, "F) ds ‘ ',//\_/// ¢ "
= (my*> +eAs )ds x (2-20)

From eq.(2-13) and eq. (2-20) ggﬂ) d/r:a

tz2 s1
6[ Ldt = GJ (mv + e A° )ds =0 (2- 21)

ta So g'\jcp dﬁ“’ eA d(k)

This expression is nothing but Fermat's principle. //O d/;— ,b g/[ )

We define "an ion optical refractive index" n as

n=mv+e A .
r

In order to execute the calculation we will use here cylindrical

(2-22)
Telfow dl+ eA-dr =

n means "an ion optical refractive index".

coordinate. In this case

mv ds = jrz + (dr)2 (%%)2 aw , (2-23)

and if the fields do not depend on W, we obtain

e AT ds=erAmdw .

Then _ -2 dr,» 4z, 2 _
nds—[mv/r Hdw) +(dw) +erAw]dw . (2~24)

It is necessary to know the relation between the magnitude of kinetic

momentum (mv) and the accelerating energy U. According to eq. (2-12)

—;-mv2 +ed =0 ' (2-25)

then nv =+ 2m(U-ed) .



As in fig. 2,p2l we choose variables (x, W, y) instead of (r, W, z) in

cylindrical coordinates as

3 o A dn paransy 30n “'}
w=uw (2-26)
Yy = 2

Introducing these notations into eq. (2-25)

nds = ponmU{\/(U"e®)[(l=x )2+(§—02+(%;)ﬁ + = (l+§—)Aé}dw

e Po Po =g PO
: (2-27)
Fermat's principle can be rewritten
GJ Faw = 0 (2-28)
_ [ [(u=e9) s Xon i Byl 5 e X 2
F V/ - [(l-po/ +(po) +(p0) 1] < ————%l+p0)Aw (2-29)

2mU

where x' and y'stands for dx/dwW and dy/dWw, respectively. As we discussed

in section (2.2.), eq.(2-28) may be written alsc in the form of Euler-Lagirange

Equation, : >
)N @ G A
d OF oF T S e e 7, /1Pw
o AT S ; e (2-30a)
d ,oF oF q»" — ). =9
T e : . (2-30Db)

We have accomplished our original aim, to derive the path equation in the
electromagnetic field.

We have found that there are two kinds of equations, egs.(2-5) and
egs. (2-30) which determine the same ion trajectory in the electromagnetic
field. 1In the former-case, the independent variable is time, while, in

the latter case it is angle. With the transformations

d _d  dw

e Tl 2730
2] 2 2

d e é__(g%)z + %B duw (2=32)

at?  aw? ac?

both equations should coincide. We will derive the solution in the electric
field in accordance with Euler-Lagranges equation and that of the magnetic

field by Lagrange's equation.
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[3] Transfer Matrix and Ion Optical Position Vector

In this chapter we will state under what initial condition we shall
solve the path equations given in egs.(2-30) and how we shall arrange
the solution for the purpose of practical use. It is well known that in the
paraxial approximation of optics a frequent use is made of matrix operations.
Because of the great analogy between light optics and ion optics this type of
operations is also applicable in ion optics.

Consider two planes perpendicular to the main ion trajectory. (see fig.1l)
The first plane, having coordinates (x,, y;) is acting as an object plane,
the second plane has coordinates (x3, y3). The trajectory of an ion passing
through the X3, y2 plane is projected on to the symmetry plane and also on to
the plane through the main orbit, perpendicular to the symmetry plane. These
projections make angles ¢ and B, with the main orbit. Then the initial
conditions are defined by four quantities (x,, ya2, a2, B2). The second plane,

having coordinates (x3, Y3, O3, B3), is acting as an image plane.

Arbitraly Ray

Main Path

Fig.l. Coordinate system.
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We confine ourselves to paraxial trajectories. The trajectories of an ion
with a certain momentum and energy will be defined by (x2, y2, 02, B2).
Thus x3, y3 are also determined by these four quantities. Hence in a first

order approximation one may write :

X3 = ag + aixa + azys + az0z + ayBa (3-1a)

Y3 bo + bixs + boys + bsog + quQ_ o (3-1b)

Since the trajectory should be symmetric with respect to the median plane,

we can eliminate some coefficients. Then egs.(3-1) are written as :

X3 ag + aixs + az0s (3-2a)

¥3 = bays + byB2 (3-2Db)

Considering the later results of egs.(5-17) which will be derived by solving the
differential equation, we can assure the reasonability of egs.(3-2) and find
that the coefficient ag is related to energy or momentum deviation §. We
can get the similar expression for the inclination angle o3 and Bj.

From eq.(3-2) it can be seen the relationships are given by linear
combinations. If a small variation in these quantities is admitted the
position and the direction of the orbit in image space will be effected.

In an electric field the ion orbit will be influenced by the energy of the
particle, in a magnetic field by its momentum, in a mass spectrometer by
its mass. We use the capital § as this deviation.

Then the path of the ion passing through the (x3,’y3) plane is finally

given by the relationships:

X3 = R11X2I+ Rjg0ga + R33d (3-3a)
03 = Rp1X, + Rpa0p + Rp36 (3-4a)
Y3 = 211¥2 + 23282 (3-3b)
Bs = Z21¥2 + 23283 (3-4Db)

where Rij and Zij is a quantity determined by the properties of the field, for
example, field constant and angle of deflection. If the properties which an
ion has at the entry into the field are expressed by vectors (x,, 02, 6),

(Y2, Bz) and those at the exit are expressed by vectors (x3, o3z, 6), (Y3, Bs).
(8§ is regarded as unvarying), then a single sector type field may be regarded
as producing a transformation from one vector to the other.

We define this vector as an "Ion Optical Position Vector". Accordingly

this field can be expressed by the 3-row, 3-column and 2-row, 2-column matrices.
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The two vectors are connected by the product relationship

~

rxs rR11 Ri2 Rla‘ X2

(o = R21 R22 Rz3 Q2

§ 0 0 1 § (3-5)
. L - 7/ . .

r‘ ] ¢ 1

Y3 Z11 Zi12 Y2

Bs B Z21 Z22| | B2 (3-6)
\ J . /

We define this matrix as a "Transfer Matrix" (in a first order approximation).

The main property of transfer matrices can be derived from Liouvill's theorem.
This theorem states that the volume of the phase space is a constant along the
path of particles. In the present calculations x and 0 (or y and B) may be
thought of as a two-dimensional phase space because in paraxial approximation

o is the ratio of the x component of the particle momentum to the total

momentum. Thus areas in x-0. space are proportional to phase space areas.

From eq.(3-2) we can express x3=x3(x2,02) and O3=03(x2,02). Then as is

well known, the element of area (dx3d03) transforms to the area element (dx2d02),

by means of the Jacobian determinant, written symbolically as

ox3 90,3
dO(xs, O3) _ d0x2  0x2
a(XZI a2) BXS aas (3-7)
90,2 d0l2
14
according to the relation
éiﬁii_gil dx2d02 . ' (3-8)

dx3dds = 51z, a2)
From the conservation of phase space volume, Jacobian determinant should equal to
ﬁnity. The transfer matrix is nothing but Jacobian, whose determinant equals

_to unity. This result is easily extended to three dimensional matrices

because the third row 6f such matrices is invariably (0, 0, 1). The above
discussions are described on the basis of the first order approximation.

If we want to know the aberrations of higher order focusing, it is necessary

to introduce higher order terms. The second order trajectories of the ion:
passing through the (x3, y3) plane are given by the similar relation to

eq. (3-4) as follows :
X3 = Ry %2 + Ryp 02 + Ry3 § + Riy x22 + Ris X202 + Rie X26 + R17(122
. 2
+ R1g028 + Ris82 + Ry10 y2? + Ri11 y2B2 + Ri12 B2 (3-9a)

2
03 = Ra1 X2 + Raa O2 + Rp3 .0 + Ray X22 + Rps X202 + Rag X280 + Rz7 O2

+ Rag 028 + Ras 6% + Ra1o y22 + Rz11 y2B2 + Ra12 Ba? (3-10a)
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and
Y3 = Z11 y2 + Z12 B2 + Z13 Ya2X2 + Z1y ya02 + Zis y20
+ Z16 Baxa + Z17 B0z + Z1s B30 (3-9b)
B3 = Z21 y2 + Z22 B2 + Z23 YoX2 + Zay Y202 + Z2s ¥20

+ Zze Baxz + Za7 B202 + Z2s B26 ‘ (3-10b)

Though the above equations have guadratic form, they can be interpreted as
linear transformations by introducing the following second order position

vectors :

(x, a, 6, xx, xa, x§, ao, ad, 68, yy, yB, BB)
and

(y, B, yx, yo, Y5, er Ba, BS)

Then it is clear that the ion optical position vector of second order can

also be transformed by a transfer matrix similar to eq.(3-6). In this case,
however, the number of both row and column equals to twelve in radial direction
and eight in axial direction,respectively. In a third order approximation the

elements of radial position vector should be

(x, o, 8§, xx, %0, x§, oo, ad, 85, yy, yB, BB, xxx, xxo, xx§, xoa, x08,
x6¢, xyy, xyB, xBB, caa, aogd, QSG, aer ayB, ofB, 666' 6YYI 6YBI SBB) .

The number of row and column of transfer matrix equals to 31. The detailed
discussions are given in section (5.6.). It should be noticed that the
elements of position vectors consist of the five independent quantities

(x, a, 6, vy, B) in every case and that the determinant of transfer matrix

"equals to unity.

S8
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[4] The Electrostatic Potential in a Toroidal Condenser

4,1. Introduction

In order to solve the egs.(2-30) it is necessary to determine the
electric potential ® and the magnetic vector potential a, of the eq.(2-29).
In this section we treat the electrostatic potential in a toroidal condenser.
In particle spectrometers toroidal condensers are more advantageous than
the conventibnal cylindrical condensers, since they have the property of
focusing not only in the radial but also in the axial direction. Such an
electrostatic sector field is formed by radially concentric toroidal |
electrodes in which the separation distance is independent of the angle of
deflection (see fig.2,p2l). The potential in such a condenser has been determined

6)

up to terms of third order . : Using this result, particle trajectories
can be calculated including aberrations of second orderz).

Since the electrodes are always outside of the particle beam one needs
to know the electrostatic potential more precisely than what is necessary
to solve the equations of motion for a particle of the beam, i.e. fourth order
potential distribution. Therefore we shall derive the electrostatic potential

4)

including terms of sixth order. .

4.2. The Expression of the Potential

By solving the Laplaces equation under given boundary conditions, we

can determine the electrostatic potential ¢ (x,y).
AP (x,y) =0 (4-1)

In cylindrical coordinates for rotational symmetry this equation has the

form : .
13 30 %0 _ _
To+n) 3x [ (Do+x)'a—x-] + ay—z- (4-2)

This equation is separable in the coordinate x,y. If we set &(x,y)=R(x)Z(y)

into eq.(4-2), after a bit of juggling we obtain

2
d°R 1 dR 2
+ -— = -
dx2 (Po+x) ax + k°R 0 (4-3a)
a%z " :
g2 _x29 =9 (4-3Db)

dy2
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We have therefore split the partial differential equation into ordinary
differential equations, each for a single independent variable. The constant
k is called the separation constant. The family of separated solutions of
eq. (4-2) consists of the products of solutions of eq.(4-3) for all values of
the parameter k. A general solution of eq.(4-2) can be expressed in terxms
of a linear combination of the separated solutions for various values of the
parameter k.

In eq.(4-3a)rsince x=0 is an ordinary point,the solution R(x) can be

expressed as a convergent power series around x=0.

R(x) = ] ux : | (4-4a)
i

- In eq.(4-3b) the equation for Z results in trigonometric or hyperbolic
functions, depending on whether k is imaginary or real, which can be expanded

in a power series in either case.

Z(y) = ) v, v o (4-4b)
J

Then introducing eq.(4-4a, 4-4b) into &(x,y)

R(x) z(y)

q)k (x,y)

E W x g v, ¥ (4-5)

In order to get the generalized solution we must sum up above solution

under suitable weight

k

Rearranging this expression we get a convergent power series

o(x,y) = —Eop02%<i> <l> ’ (4-6)
- 1:J:\Po/ \Po .

where the potential of the middle equipotential surface of the toroidal
condenser is assumed to be zero. Eo describes the field strength at the
middle equipotential surface, i.e. the main path x=y=0. The term (-Eo0Po0)
is introduced only for simplifying the expression of aij'

Hereafter we take this egpression as the potential distribution in the

median plane.
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4.3. The Relation between the Coefficients aij and aio

Substituting eq.(4-6) into eq.(4-1) and comparing the coefficients

of x* yJ, we obtain a recursion formula ;
(+1)a;, j42+ 041,42+ +2) 8145, j+ 0145, =0, (4-7)

where a;; =0 for i,j <O0.

Using this recursion formula, the coefficients aij can be expressed as

functions of a, .
io

Since there is mirror-symmetry with respect to the median plane, all
coefficients vanish when j is an odd number.. The nonvanishing aij for

i+j<6 are listed below.

Qo2 = —Qa;0—Aa30,

Ay = Q10— 0a20—A3p,

33 = —2a40+2a50—030—A40 5

Qo4 = A1o—0ay0+2a30+0ay40, (4-8)
Az, = 6a10-—6a20+3a30—a4o—‘aso,

A4 = —3a10+3a20—3aso+2a40+a50’

Qa2 = —240,0+24a20— 12030 +40,40—a50— g0

A4 = 12010— 12a20+9a30—5040+2050+a60 N

g6 = —9a30+9a0—6a30+3a40—3a50—as0-

Then the next problem is to know the coefficients aio'

4.4. The Boundary Conditions and the a;

4.4.1. The Shape of the Electrodes

Let us assume that the electrodes are given and we want to determiné
the coefficients a; . The two electrodes may be placed at x=b+ and x=b_
(see fig.3,p2l). If both electrodes are perfect toroidal surface, then geometry
can be described completely by their vertical radii of curvature R(b+) and

R(b_). Writing b instead of b+ and b_ we obtain
[x—b+R(B)*+y* = R(BY, (4-9)

or 1 2 1
x=b- yo—
2R(D) 8R(b)

4 6
Y= P+ ...
3 16 R(b)® (4-10)



We now may determine (dnx/dyn)x_ for n=1.2,3,¢c0¢cc00

b
from eq. (4-10)

<ﬂ> &  (4-1la)
dy*/s=by=0  R(b)’ a
<d4_x> - | 4
dy*/x=s,y=0 R(b)*’ v (4-11b)
<d_»> __s

dy®/x=by=0  R(b)* | (4-11c)

4.4.2. The Derivatives dnx/dyn of the Equipotential Electrode Surfaces
at x=b, y=0

The group of curved surface ®(x,y)=C(constant), changing C-value,

constitutes an equipotential surface. We can assume that the equipotential

surface coincides with the shape of the electrode at the neighbourhood of
x=b, y=0. Keeping the relation ®(x,y)=const, x can be expanded in Taylor

series around y=O0.

2 3
L% 2 1 d%

dx 3
X =Db + (——)y+ l(—)y '-——)y 4 seccoes
dnx
Because of mirror-symmetry (——;)x= = 0, for all odd n, (4-12)
dy y=8
2 b 6
x=b+l—(<—l—-}£) 2, L 4% u+_];_(§_x)y5+ cecsse | (4-13)

1 y 1 y
2! dy2 4! dyu 6! ay

Eq. (4-13) should coincide with eq.(4-10) up to the desired order. From

. . . . . . n n
mathematical consideration we can describe the derivatives d x/dy  as

d_ ¢,

dy bx

dz—x=_1522+2¢v¢xy__¢§¢xx, :
d* ¢ ¢% 2
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Taking eq.(4-12) into account we obtain

Gﬁz) b
~ dyz x=b,y=0 B ¢x ’

4
(£) ot Sbuty 300}
dy*/fx=by=0 ¢, % ¢z
dSx b, 15
(’(ﬁ)x b, y=0 = )(;yyyy + %{ (@syy Dyyyy+ Pyy Pryyyy)
R '
- E ( ¢yy xpy+ 3 ¢y.v ¢xx.vy +¢ex ¢yy ¢yy.vy)
15 ) 45
+ E (9 ¢xx ery ¢xyy + ¢xxx ¢y3y) - ;5' ¢§t ¢5y .

(4-14a)

(4-14b)

(4-14c)

Equating egs.(4-1la) and (4-14a), (4-11b) and (4-14b), (4-1lc) and (4-14c)

and introducing eq. (4-6) into egs.(4-14) we obtain

[

[Po

R(b)

b\ b\
:|=aoz+[axz“aozazo] (;)‘) _ +3[az;—2a,,a,0+(2a30—a30) a0,] <p—)
0 ' )

1
+ —[as2—4a3,0a,0+6(2a2, —da30)a,;

- 4
—‘36a;oa30+6a§o+8a20040 _050)002] <£> + ceey
. S o Po

3
_:I = $(aps—6a,5a0,+3a50a3,) ""5(“14—“20”04*6“22002

.[po

R(b)

Po
R(b)

2
—6ai,+18a,5a000;  +3a39a2, ~9a3,a3,) < b)
Po

. 2 - - a
+3(a24—2050a14+2050004— 30004 —6a3,00,—18a3201,+30a32002020

b>3
P

‘*.‘7%[032—3“22 azo+3Qa3,—azp)a,, +(—60a30+60a20a30—0a40)ao,] <—

0

24 +4(—6a20+6a20a30—a40)a12+(24a;0

(4-15a)
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0

2
+30a%2020—72(1%00‘2a02 ‘ +24a12a30a02+3a40a(2,2 —27a(2,2a30a20+36(lgoagz)<;‘> + ...,

5 . -
Qo6 2 2 2
_—:, = %(TS_ _ao4a12_aozal4+6alza02 . +3a22002+a04020a02—‘9a12a20a02

3 2 3
—.asoaoz+3azoaoz)+ s

(4-15b)

(4-15c)
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where b denotes either b+ or b_ (see fig.3,p2l). Introducing egs.(4-8) into
)-

egs. (4-15) we hdve five equations with five unknowns (azo,a3o,a40,a50,a60
Egs. (4-15a) and (4-15b) are for both b+ and b_. Eq.(4-15¢c), however,
represents only one equation because the right hand side of it does not
contain b.

In principle we have thus determined the a; if we know the shape and
the position of the electrodes. In other word, we have derived the solution
of the Laplace's equation that satisfies the boundary condition. If we want
to determine coefficients of higher order, we can obtain each time two more
coefficients by introducing the next two higher derivatives (dnx/dyn).

It should be noted that because of the even higher order terms the middle
equipotential surface of potential zero is not in the middle between the

electrodes of potential +V and -V. -

4.5. The Relation between the Coefficients aij and the shape of the Middle

Equipotential Surface .

For ion optical calculations it is more useful to determine the
potential distribution as a function of the shape of the middle equipotential
surface rather than the shape of the electrodes. Having chosen a favorable
shape for the middle equipotential surface, electrodes can be calculated
that produce such a middle equipotential surface.

Let us describe the quotient between the radius po of the main path

and the axial radius of curvature R(x) of any equipotential surface at

" _\2 " 3 " 4
Do cae (L) S (AP () (2] (4-16)
R(x) po/  2!'\po 31\po 4! \po - '

e <_P_o_> _ Po
R(x) x=0 Ro

_ [4 _po_>] | (4-17)
¢ po[dx (R(x) k=0

c“: e o o o

y=0 as

where

( here R0 is the axial radius of curvature of the equipotential surface
X=y=0) .

From ion optical requirements we can choose suitable values ¢ and c'.
Here ¢ and c' define the axiai radius of curvature R(O) of the middle

equipotential surface and the change of this curvature for equipotential
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surfaces close to the middle one, respectively. Since the electrodes are chosen
to be perfect toroidal surfaces, they form circles in the X,y plane R(b+) and
~R(b_). In this case we have only two parameters to determine c, c', c¥, cesce,
Consequently, c", c™ and c¢"' must be functions of ¢ and c'.

Further we must express the coefficients aij (i+j<6) as functions
of ¢ and c¢'. ‘This we can do in the following way. We assume that egs.(4-15)

hold for any value of b. Putting b=0 at first we get:

Po__ ¢=ay,,
R(0)
Po 3 3 | 2
—_— = =1 —
(R(O)) ¢’ =1(apy 6axzaozi|'3azoaoz), (4-18)

o Y _ s o[ Gs _ |
(R(O)) c -}(15 a04a12+...>.

After differentiating both sides of egs.(4-14) after (b/po) and putting

b=0, we obtain

d [eo D _oca, -
{d(b/Po)'[R(b)]}ho € =127 0020

_d___ _p_o__ 3} =3 2 r— 1 _
{d(b/Po)[R(b):l yoo = 236¢ = 3@1emaz0a0t ). (4-19)

Introducing egs.(4-8) into egs.(4-18) and egs.(4-19), we can express the

. . g [ ]
coefficients a20, a30, a,0° agyr a60 as function of ¢ and c¢'.

ap =1,
azo = —1-—c, a\ozt\i.- @z, = =4 t1 + C
aso = 2+2c+c*-¢',

d40 = —6—5c—=5c*+2c +6¢c’,

aso = 24+19c+13c2+15c3—6¢*
—-7c’—18cc’—24czc’v+6c'2,

ago = —120—93¢c—60c*>—30c> —57¢* +30c°
+33¢ +72¢c'+ 117¢2¢ +60c3 ¢’ — 18" (4-20)

—90¢c” .

The other coefficients aij may be obtained from egs.(4-8) and egs.(4-20).
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4.6. The Position, Shape and Potential of the Electrodes

When the coeficients ¢ and c¢' are fixed according to ion optical
considerations, it must be decided where the electrodes should be placed
and what shape they should have. Under the assumption that the potential
of the two electrodes has symmetry around a point of the main path
(x=y=0) we can obtain the position and shape of the electrodés in the
following manner:

1) Knowing ¢ and c' one determines the aij from eqgs.(4-8, 4-20).

2) One sets the positive electrode at a position b=b+.

3) Introducing this b+ into eq.(4-6) one can calculate a certain

value V for the corresponding potential of this electrode.

4) For some value b=b_ eq.(4;6) yields the potential -V. The value
of b_ may be found by using some interative method starting with
the value b_=—b+.

5) Introducing these b+ and b_ into eq.(4-15a) one can determine the
corresponding axial curvatures R(b+) and R(b_) of the two electrodes.

In this manner all parameters of a toroidal condenser have been determined

and the initial problem is solved.

radial axis of symmetry

Fig. 3. Toroidal electrodes together with the radial and axial
coordinates x and y.

radial axis of symmetry
(bo)
R - y
X
b- be
Po

Fig. g The intersections of two electrodes of a toroidal con-
denser with a plane w = constant.
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[5] Particle Trajectories in a Toroidal Condenser

Now we will proceed to solve the differential equations by successive
approximation and will arrange the results as a transfer matrix. We know
two kinds of differential equations, that is, Lagrange's equations of egs.
(2-5) and Euler-Lagrange's equations of egs.(2-30). Essentially both equations
should coincide in physical meaning but the intermediate stages quite differ to
each other. We have tried both ways and have got the same results.

Here we shall proceed the discussion along Euler-Lagrange's Equations.
The results obtained till now are summarized in brief as follows. A

The electrostatic potential ®(x,y) is given in eq. (4-6).

®(x,y) = -Eopo), ;%%Tiggol(%;ﬁj (5-1)
where .

aio =1, aiz2 = -c-c?+c! '

a0 = -1l-c , ayo = —6-5c-5c2+2¢'+6cc’ '

arz = ¢ , a2z = c+dc®-c'-6cc’ ’

aso = 2+2c+c2-c; ' aoy = -3c%+6cc' . (5-2)

.

The ¢ and c' describe the axial radius of curvature R(x) of equipotential

surface at y=0 as :

po - ] l{_ _(_::__}_(_2 seo000® 0
R - c*r e YTyt (5-3)
with c" = -c + 2c2 - ¢ + ¢' - 3cc!

Euler-Lagrange Equations in electric field are derived from eq. (2-30).

d_oF oF _ -

e "o O (5-42)
d OF OF _ ' A
ey "oy T ° (o7ip)

where
_ U-ed(x,y) ] X 2 x'.2 ; y' 5-5
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5.1. The Expansion of F

The potentiél ®(x,y) is defined to be zero at the middle equipotential
surface of the toroidal condenser. If we have ions that are not all created
at the same point they may have slightly different kinetic. energies U at this
zero equipotential surface. '

This energy may be expressed as :
U = Ug(1+6) (8<<1) ‘ (5-6)
where Uy is the energy of some reference particle travelling along the main

path. Introducing egs.(5-1) (5-6) into the ion optical refractive index F of

eq. (5-5) we obtain

1ot = ./eEQQﬂ lJ X X_
F(x,y,x',v',90) —\/ (Q~f1+6)2 l!j!( ) ( ) ][(l+-—ﬂ +( ) +( ) ] .

K (5-7)
In order to be able to solve egs.(5-4) to a third order approximation we

must expand F in a power series around x=y=x'=y'=80, including all terms -
of fourth order :

F=I‘?0+F< )+Fx,,<p >2+F (po) +Fx‘,( )‘)”“(;T,) +F,,( )+Fm( )3+Fm( )(p%)z
+Fm( ) ( >6+an,;(po)52+qu< )(;c_o)er r,,.( )(pyo) +qu(pi)
+me(%)( ) ,,,,,(2)’+2F,xx.s< )5+F,,t,,§pio>< )5+2F,,,,a<2 ) F,,é,,< o) 5
e Qo) 2
+F,i,,,< ( )5+Fx%,a<;)(”'>za+_ﬁf'x'x,(:;>4+rm, (:°>2<’f'> +Fym<;,—'>

~

‘l‘]

+

(5-8)
where |
. o o
F0=1) Fx=01 Fxx=—%(3+azo)s Fyy='—'%aoz, F:ai"‘ZI x'x’ 2Fyy
Fxx,;:= - (1 +azo + g_g_(l) ’ nyy _(aoz'*‘%“lz): Fx_x& = 2+'}a20’ F)'.vb = %(102,
Ay , 930 , 940
.Fx6ﬂ=Fxx'x'=ny'y'=—1’ Fryxx= -&(3'*'“20) (__—+_3—+ 24) ’
. . . .&
Qo Goa aro+1taao >
a a = ——— Foxes= 3+3az0tsds
Frpyy= —34B+az0)ao; — (‘%3 +a,;+ —i—2> ) Fyppy = 3 24 xx
a - o= Froyy = 43— 020) 5
Frys=1Ba02+a13),  Fun= —3(5+dz),  Fpas=-— '%'2', Fyss=1, Fxx.x xt = Fxxy'y
=1,
F.V)'* %= Fyy} 'y’ aTOL" s Fxx'x’ﬂ = F.\'y'y'& = %’ Fx‘x’x’x’ = Fy'y’y’y' = "%’ Fx'x ¥’y 4

e come s : ' (5-9) .
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The relation Fx=0 stems from the fact that along the main path x=y=0 the
centrifugal force 2Up/po is balanced by the electrostatic force -eEp.

This relation corresponds to the zeroth order solution of egs.(5-4).

5.2. The Resultant Path Equations

Normally the x-focusing of a particle spectrometer is much more important
than the y-focusing. Therefore one should treat eq.(5-4a) in a higher
approximation than (5-4b). We solve the path equation of x-direction to a
third order approximation and y-direction to a second order.

Substituting eq.(5-8) into egs.(5-4), we obtain

” r<;2 i . s .
X -2Fx"‘x =\/£05 + 3Fxxxx2/po +Fx)',vyz/p0 +2Fxx6xa _p062 + xﬂ/po _ylzlpo +2xx"/p0 +4Fxxxxx3/p(z)
+ ZFXnyxyZ/p(z) + 3Fxxxdx26/p0 + nyyby26/p0 + 2Fxx66xaz + p053 + 2Fxxx'x'(x2x” - xx’z + xyﬂ)/pg
2

= 2F e 2yx'y + y7x") [ p5+40(y"" = X" = 2xx") | po+ 3% X" [0 + 40"V +2x'Y'Y") [ PG + ..,
Y'=2F,y =2F, xylpo+2F,y6+2x'y [po+2xy"[po + ..., (5-10)

In order to solve eqgs.(5-10) we use the method of successive approximation.

In this case we can assume that the solutions are expressed in the form :

x (w) xI(w) + X (W) + x_(w , (5-11a)

I

Y =y (W + vy, W . (5-11b)
Where the subscripts I, I , and II distinguish the first, the second and
the third order terms,respectively. Knowing the n-th order solution we can
obtain the (n+l)-th order solution if we introduce the x, y, dx/dw, dy/dw
of the n-th order solution into the right sides of egs.(5-10) and solve the
resultant differential equations in the usual manner.

We need to know x(w) and y(w) as well as the angles of inclination of
the trajectory relative to the main path, o(w), B(w) in order to describe
a particle trajectory completely.

These angles are determined as

x'(w) = dx(w)/dw (potx) tano(w) (5-12a)

(Pot+x) tan B(w) . (5-12b)

]

y' (W) = dy(w)/dw

Let us also distinguish here between first, second and third order terms.

tan® = (tan0)  + (tanu)I[ + (tana)IE , ' (5-13a)

B=B + B (5-13b)
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where the subscripts I, I , II have the same meaning as above. To describe
the particle trajectory, we shall use here tan® instead of o,which is of
advantage for third order calculation. In order to solve the differential

equations, the initial conditions which must be known are given as :

x(0) = x2, x'(0) ='(g§0 = (po+x2)tants , (5-14a)
w o

v =yz, y'(0) = &) = (po+xr)tanBs . (5-14b)
w=0

These differential equations have been already solved to a second order
approximation by many authors.z)
Though the third order results can be obtained by extending the above
method, we will introduce here a new method which is exceedingly suitable
for the computer calculation. For this purpose new matrices and vectors
are introduced as shown in egs.(5-20) and (5-29). Then the right hand side
of egs.(5-10) can be interpreted as the sum of products of these matrices

and vectors. Therefore their solutions will be expressed in a similar way.

5.3. The First Order Solution

Taking only the first order terms from egs.(5-10) ,we obtain :

' 2
" = -15
x7 + kxxI poS , . (5-15a)
" 2., _ (5
yr + kny =0 ' (5-15b)
where
kx = Y=2F = ¥ (2-¢) (5-16a)
k = V3F =+ . (5-16b)
Yy Yy

The solution of egs.(5-15), x(w), y(w), tanc(w), B(w) are easily obtained
using the initial conditions given in egs.(5-14).

Then we have

xI(w) = X2C, + (tanocz)posx/kx + 6po(l-cx)/k; , (5-17a)
tanaI(w) = —xakxsx/po + (tanocz)cx + Gsx/kx , (5-18a)
yp(@) = yzc  + sz°sy/ky ' ‘(5-17b)
B (w) = -y2kysy/po + Bzcy ' : (5-18b)
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with

sin(kxw) R s

()]
]

sin(k w
y ( ¥ )

il

Q
]

cos(kxw) ’ c cos(kyw) . (5-19)

y

The egs.(5-17) and (5-16) represent the first order or Gaussian approximation

of a particle trajectory.

5.4. The Second Order Solution

5.4.1. The Radial Trajectory

The equation which x_ should satisfy is obtained by substituting the

o
first order solution egs.(5-17), (5-18) into the right hand side of eq. (5-10)
keeping only terms of second order. After rearranging systematically, this
equation can then be written in the following form which consists of two

vector and one matrix

" 2 = . . -
xp o+t koxo mz N G(n]I |m) (5-20a) .
mn
T
where m and N represent the components of the following vectors :
m=1,s,c¢c, sw cw, s2, sc, s2, sc (5-21a)
14 X, xl x 14 X ! xl X xl yl~ y yl
n, = xx, x0, x6, oo, oS, 85, yy, vB, BB , (5-22a)

Vector m is only conventional one which is function of field constant and
aperture angle. Vector nﬂ:coﬁsists of the second order components of the
ion optical position vector stated in chapter [3]. It should be noticed
that all matrix elements of G(nﬂ:lst) and G(nn:lcxw) are equal to zero.
G(nn:lm) represents the newly introduced conventional matrix, which

consists of 9 x 9 elements.

XX |G G
Xa
%O |G G G
aa |G G

G

66 [G] |G
yy |G G

BB lG : G
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where the non-zero elements are indicated by G. The explicit expressions

of the non-vanishing elements of G(nn Im) are

GEsrlt) = - (=24, Gluslssd = o QEE=a),  Glaaley) = = 22 Glexlses)
0 0o X

GEeoll) == —22G(xll),  Gwdle) ==y G(xdlses) == 2 Glexlscsd,  Glel) = o

2 2
G(aals,s,) = — i—;’ G(xx|s.se),  G(adls,) = %‘3 G(xd|c,), G(ub]sicy) = %%3 G(xx[5xSx)s .

X : x

G(&(Sll)—:j’ L2 G@sle)=-22¢G ¢ PG
Sle\7 777/ (lcx _‘—'I'(E (xalcx)s G(éélsxsx)—k_4' (XXIS,‘S,‘),

KKt M

Pola
K2

y

GUND = -- (< +a,  GOMlss)==L2,  GOBlse) =22, GBAN==po  G(BPlss)=
] y .

(5-23a)
where g; and g, are the abbreviations given in Table 1.
Since the right hand side of eq.(2-20a) is a function of.W through
vector m, the solution x(w) is also considered to be a series of m. Therefore

we assume that

xo (W = %mrzl np *H(ng [m) . (5-24a)
I
Introducing eq.(5—24a) into eq.(5-20a) and comparing the coefficients of
equal m, we can obtain the relationships between H(nn Im) and G(n]I Im) .
From these relations and the initial conditions given by eq. (5-14a), all
the matrix elements H(n]I |m) can be determined. The H(nnl m) also are

elements of a 9 x 9 matrix.

-
xx [H
"Xa [H]H H
H
H

xb
ao
ab H H H
66 [H] [H[H] |H
yy (H Hl
yB H H
BB [H!_{H I_1H

T

where the non-zero elements are indicated by H.

Explicitly the H(nn Im) are : [ no is defined in eq. (5-22a)]
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H(nyl1) = (1/k3) Glnyg[1) + [2/ Bk G(myls,s.) — [2k [ (k2q)] G (nyls,s,),

Hnyls,) = [1/ kDI G(muls ) + 11 3k Glnlsce) = [y [ (kg 1)) Glituls,€,) + (Lk ) zars
H(nyle,) = — H(nyl1), H(nyls,w) = [1/(2k,)]1G(nylc,), H(nyle,w) = —[1/(2k,)1G(nyls,),
H(nlses) = = [(1/GEDIG(nls,s.),  H(mylsaey) = —[1/ k)] Gnyls,c,),

H(nlsys,) = (1/q7)G(nuls,s,),  H(mylsye,) = (1/g7) Gnyls,e,).

*(5-25a)
where 6n . %202 is a Kronecker's 6—symb61 which is always zero except for
N =x202 and q7 is the abbreviation given in table 1.

The expression (5-25a) for xJI(w) can be rearranged as
X (W) = 2 n Zm"H(n]I Im) = z no °R(x|n]I) (5-26a)
" o

In this equation the nine R(xln]I) are the second order elements (nos. 4 to
12) of the radial transfer matrix as shown in fig.5.p48. The N characterizes

"the appropriate column.
The second order approximation for tand, (tan®) T’ is obtained from
the relationship eq.(5-12) as
= - 2 ' '
(tanoz)n (1/po )xIxI + (l/oo)x]I -

Substituting eqgs.(5-17a,5-26a) and rearranging,we obtain the expression

(tanOL)]I = z no Zm'H' (n]I Im)

n]I m
=1 ng Elm- 8 (n [m) 44 (n [m)

T

n
=l S -

n °R(0t|n )
T I
I (5-27a)

where H]{ is derived from —(l/poz)xlxi and H} from (l/po)x:'[[ and both comprise

the elements of a 9 x 9 matrix.

334548
- ASFATFAAA
XX |H' H'
xa [H HiH
%8 o' H| [H
aa | . H
ab [H] [H]H] [HR
56 H' H| [H
Yy H
yp H . H
Bp H




All non-zero elements of this matrix are indicated by H'. Explicitly

the matrix elements read :

Hi(xxlsye) = kops,  Hi(xell)=—1/po,  Hi(xals,8) =2[po,  Hi(x6ls) = 1/(kepo),
Hi(x0ls,c) = —2/(kepo)y  Hi(aals,c)=—1/ky,  Hi@d|0) =1/k2,  Hj(adle,) =—1/k%,
Hi(edls,g) = —2/kZ,  Hi(80ls) =—1/ki,  Hi(8dlsec,) = 1/k3;

Hy(aylL) = ko H(nylsce,) [ po+ kyH(nulsye,) | pos Hy(nylsy) = =k H(nyley) [ po+ H(nuls,w)/ po,

Hi(nyle,) = ko H(nyls)/ po+ H(ngle,w)/ po, Hj(nyls,w) = — k H(nylc,w) [ po, ‘ :
Hj(nyle,w) = k H(nyls.w)/ pos H(nyls,s,) = —‘2/fo('711|st::)/!’0’ H'z(f"n|3xcx) = 2k H(nyls.s) [ po,
H(nylsys,) = —2k,H(nyls,c,)/ po, H(nylsyey) = 2k, H(nylsys,)/ po- -~ . . (5=~28a)

The nine R(alnﬂ:) in eq.(5-27a) represent the second order elements (nos.4
to 12) of the second row of the radial transfer matrix as shown in fig.5.

Here again nn: characterizes the appropriate column.

5.4.2. The Axial Trajectory

The solution for y equation is obtained in a way similar to x equation.

From eg. (5-10b) we obtain
n 2 = ° -
Yo+ Kovy ng nGlnglm (5-20b)
IT

where in this case m and n, are the components of the following vectors :

= -21b
m sy, cy' syw, cyw, sxsy, sxcy, cxsy, cxcy' (5 )

n_ = yx, ya, y8, Bx, Bo, BS . (5-22b)

The G(nI[lm) are now elements of 6 x 8 matrix

334387 G
) FETHFSHF XSS
yx G G
ya G|G
y6 [ |G G G
Bx G|G
Ba G G
B6 (G G[G

.

The nonvanishing elements indicated by G are :

G(yxlsesy) = 2kekyipo,  G(yxlesc,) = qslpo,  G(yalsee,) = qglks,  G(yaleys,) =—2k,,
G(yole,) = g5, G(¥Olsis) =2k, G(ydlese,)=—qolk ,  G(Bxlsic,) = ~2k,

G(Bxlessy) = qslk, o G(als.sy) =pgs/(kik,),  G(Balescy) =2po,  G(BSls,) =rgolk,.
G(Bdlse,) = 2p0lkes  G(Bdlcys,) =-qff (kik,), _

(5-23b)
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The solution of eq.(5-20b) can be written as :

y @ = Im Incu(n|m . (5-24b)

mnn

Introducing eq. (5-25b) into eq. (5-20b) and comparing the coefficients of
equal m we obtain the relation between the H(n]I lm) and G(nI[ |m) . Using
additionally the initial conditions of eq.(5-14b) we can determine all

H(n]I Im) . The H(n]I lm) are elements of a 6 x 8 matrix,

Pe)
n
5

Cx Cy

S
&

33
B >N >
0 n o

T 5x$y

ya iH H[H

<
x
I |Tjcy

Bx [H

T

H

w
=]
X
X

B6 |H H| [A[A

The non-zero elements are indicated by H. Explicitly the H(nJI Im) are :

[ n is defined in eq.(5-22b) ]

H("ulsy =1 /(2k§)] G(nyls,)+[qs / (kxkyq7)] G("lllsxcy) —(1/q7) G(nﬂlcxsy) + (1/ky)5nn,ﬂzxp
H(nyle,) = [2k, [ (kq7)]1G(nyls.s,) +(1/q7) G(nylesc,). A

H("ulsyw) =1 /(Zky)] G(nlllcy)’ H(n,,lc,w) =—[1 /(2ky)] G(nulsy )s

H("ulsxsy) =—(1l/q7) G(nlllsxsy) - [2ky/(k;‘17)] G(”chxcy s

H("lllsxcy) =—(l/g7) G("n|5xcy) + [Zky/ (k«q7)] G(nlllcxsy s

H(nyles,) = [2k, [ (k,q7))Glnlsce,) = (1/a7) Glnuless,),  H(nylecy) = — H(myle,),

' ' (5-25b)
where g¢ and g7 are the abbreviations in table 1. The expansion (5-24b)

of Yo (w) similar to eq.(5-26a) can be arranged as

yg @ = Enn I%m'H(n]I |m) = rflnn *R(y|ng ). | | (5-26b)
I I
The 7 R(yInI[) are the second order elements (nos.3 to 8) of axial transfer
matrix.

Similar to eq.(5-28a) B]I is written as

By =1 nplmEltn [m+ntta  |m] =] n_*RB|n ) (5-27b)
n]I m n]I

The Hi and H) comprise the elements of a 6 x 8 matrix

3303843
FTRFTAFS &
yx H[H'
ya Hl Hl
yb H] H]H
Bx H' H'
Ba HH
po [ H[H] [H H
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All non-zero elements of this matrix arevindicated by H'. Explicitly

these elements read :

Hi(yxlees,) = kylpg,  Hi(yals,s,) = k,[(poky), - H{ySls,) = ky[(pok3),  Hi(¥dlc.s,) = —k,[(pok2),

H{(Bxle,e,) =—1/po,  Hi(Balsye,)=—1lky,  Hi(Bdic,)=—1/ki,  Hi(Pdlese,) = 1]kZ;

Hi(nyls,) = = k,H(ngle,) [ po+ H(nyls,w) | po, H(nyley) = k,H(nyls,) [ po+ H(nyle,w)/ po,

Hiy(nyls,w) = =k H(nylc,w)/ po, Hi(nyle,w) = k,H(nyls,w)/ po.

H'z("ulsxsy) =- kyH(nlllsxcy)/pO - ka("ulc.‘sy)/Po- H‘z("uls;-cy) = kyH("ulsxsy)/ﬂo - ka(”ulchy)/Po,

Hll(nlllcxsy) = ka("ulsxsy)/Po - kyH("ulcxcy)/POa Hll(”lllc.\'cy) = ka("ulsxcy)/Po + kyH(“ulesy)/Po-
(5-28b)

The coefficients R(BlnI[) in eq.(5-27b) represent the second order elements

(nos.3 to 8) of the second row of the axial transfer matrix shown in fig.4.

X 8w X B

XN >~ > >NQAQ.QQ.

y [RIR]R[R]IR[RIRIR
B [RIR|R[R[RIR|R|R
yX RIR|R[RIR]|R
ya RIR|R|R]R|R
yb R|{R|R|R]R[R
Bx R|R[R[R[R|R
Ba R|R|R[R[R]|R
Bo R[R|R[R]R[R

Fig.4. The axial transfer matrix of second order. The elements of the first and

the second row are given by egs.(5-17b), (5-18b), (5-26b) and (5-27b). The other

matrix elements are given by eq.(5-42).
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5.5. The Radial Third Order Solution

The differential equation for x is obtained by substituting the first

T
order solutions (5-17a, 5-~18a) and the second order solutions (5-24a, 5-24b)
into the right hand side of eq.(5-10) and taking only the third order terms.

The equation is written as

" 2 —_ ° -

I ) mrz1 np Gl |m (5-29)
R 11

where m and N now represent the components of the following vectors

2 2 2
m=1l,w, s, c, sw, cw, s 2, sc, s 2, sc,sWw, cw, s "W, scuw,
X X X X X X X Yy Yy X X X X x

2 3 2 2 2 _
sy w, sycyw, sx ’ sx C r sxsy ’ stycy' cxsy ’ cxsycy, (5-30)
R S XXX, XxQ, xx8, xoo, xo8, x88, xyy, xyB, xBB, aoca, aad, ads, ayy,
oyB, oBB, 88§, GYYI SyB, SRR . (5-31)
The G(nnllm) are elements of a 19 x 22 matrix
c...3333334448 &
2333033333 ATATANT G
-3 A S AT AARRAS I A AAASAASS
xxx |G G G G
X¥0, G G G
xx5 |G 6 G G G
xad |G G ¢] G
»ab |_|GIG G G G
%00 |6 GIG! |G G G
xyy Gl | 16 GG G|G
xy3 L G G_IG G G
xpp 5|1 |G 13]G GG
cad Gy G G
aod IG G G G G
add |_|GIG GG G G
ayy 3 Gl_|G G G
aypiG G Gl_|G GG
afp G ¢l G G G
66616 G[G| (G G G
oyy|G G G|G G GIG
6yp| |G|G Gl !6 G G G
6BBIG G Gl |6 G GIG
[
where all non-zero elements are indicated by G. Explicitly these G(nnllm)

~

are :

2, ‘ 2 2
Gexxll) = — (k: - -‘1—;) L Glexxle) =— = (k:+kf. IR T q;) ,
3po k; Po



2 a3 1 (10K?
G(xxx stx) = ('—Zki - + _l> ) G(.\',\'XISXSXCK = <—_ -4 + i L ’
243

2601 3(]2) _ 2 ) 4q
3k, Ski + A G(xxals.c,) =3 4k, — kx

1 23k,
Glxxals,) =—| —ki —
Gexels:) Po( 3

G(xX0|S5,5,55) = %« G(xxX|5:5Cy)s G(xx48]1) = pl— (%L + % - ggl + :”kq_f + EZ}‘ %)

1, 1.( 8kL 2 4q, 3q, 44 3q
G(xxdlc,) = — (4ki +3—q,)— G(xxd|1), G(xx8|5,5,) = — Bl T & N & WA ¢ R L4
(xxd| Po( q,)—G(xxd|1) (xx65,5,) e T3 3 e e 1)

3f11+2_‘_1_5_>’

PR G(xx0[5,5,:Cy) = — :ik_ G(xxx|5:55Cx),

X

G(xxd|s.c,w) = pl (—Zki -2k, +k.qgy —
0

- 2 5q, 24"
Gxoal1) =3 ( 2+ —I";' - -"—4') . Grualey) = —k2+1—G(xawll),  Glxaals,g) = —2G(xaa|l),
305
G(xat]s,5,¢,) = — =5 G(xxx[ss.c,),  Gxadlw) = — 7= G(xxéls ),
Gxadls,) = (5k L1520 324, §‘ﬁ—§‘ﬁ>, G(xaalsc)w(%—i—sqw‘l%_z‘l_? 64,
ky 3k, 3k 3k K * 3 ky 3k, 3k3 3k K
2
G (xad]s,5,0) = G(xxéls @)  G(xed]sys,s) =— 9,:’3—" G(xxX]5,5,¢.)s
8 4 4 8 16g2 6
G(x08|1) = <_ Ttyat i; - —1314—‘ - W"; - 72’—3) . G(x8dle) = — k2 — = — G(x86|1),
3 2
G(x80|s,w) = (k Tl bt ”i . [ 2q‘> , G(x83ls,s,) = (5 _8 80 8as Sai, 6‘1’>
2k, KXk . 2 3kE kE 3kS kE
G(x83]s,c) = — “Po G(xxd|s.c 55 - 300 .
xCx = 2 X xw)5 G(‘\ab'sxsxcx) = 7 G(.XXXISxSxCx),
2
G(xyy|l) = _% <_5k,2:+4 _ 2(112‘15 _ 2419496 + ﬂfl_:;) ,
Po x k:ch7 q7
2 ~
G(xyyles) = L (—(1 +kDk; — 2k,,2q1 2q12q4q6 443 +q: )
Po x kxq'; qq )
2
Goupylss) = - (ak2 = 2991 _ 40486 | 201906) Gy pps ) = 514_
po\ k? q7 k2 ’ »y ’
(Y] x xq1 0q7
: 1 2 4q2
G(xpylsss, )———(Zk‘ -s-""); G(xyyle,s =—<——"—'i4-+-ﬁ— )
) poq-, qa kx yl ysy) pg q- q+ q3
GeBls) =~ LGyl GGl == (M -3 ), GGblse) == s
k, qq k.q, yy poky
' 2p 2
GxyPlsssys,) = T,o Glyylssey),  GOoybless,e) == 72 Glayyleas,s),  GUxBBID = (21‘121 4}321;14) ,
. ¥ x47

29,
k2

A

- G(xPBle) = —ki -1-G(xBpI),  G(xBPlsysy) = (4 N q
7

_ 4411‘14)
k2gqs ’

).
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412 4 2 : 2
G(xpPls,s,) = ( k;{;"* If’;" ) . G(xBPlses,e,) =— ‘k’— Gxyyls,s,e,),  G(xBPleys,s,) = — Z— G(xyyle,s,s,),-
y ¥y y

3
G(aoatls,) = /_I:_" G(xoafcy), G(aaat]s cy) = % G(xax]l), Gooto]s,5,8,) = — % G(xxx|8.8:Cy),

X
~

1 2 2 10 8q2 ' : .
G(aa5|1)=po( 3*7?*3%" },"+3-Z—) G(andlc,) = po— G(aad|1), .

2 4 329, 4q° 3q,) 2
G(otdls,s:) = po <§ i 3q_k|2 + -3% SZ:’ + :42) G(oad|s cw) = — %% G(xxd|s.c,0),

3
Gloadls,s,c) =7 2P0 Gixxxlssaey),  G(addlw) = %‘; G(xxélsxcxa)),

X X

x

B ke, 4 29 2q, 50q, 2qi  6q, _ Po

10 22 5¢, 354, 24} 6q, 2p2
= —_—— I e - = =) 50|85, ———G ) X
G(xdd[s.c,) po( 3%, + % + TR G(add|s.5.w) P (xx6]s,c,w)
G(000]s,5.5,) = 3—— G(xxX|5.5:Cy)s G(ayyls,) = Pk_o G(xyyle,). Glayyls,e,) = — — G(xyyls s,),

x

8k 8k 443 :
G(ayyls,c,) = ( )(I4 y;h‘h + kQ4 ) ’ G(ayylsys,s,) = %9 G(xyylessys,),
kxq7 y41 x

2 2

Glayyles,c,) = — 7= G(vyyls 5,¢,), - GlayBl)=— E’i‘l— G(xyylsesyey)s  GlayBle,) = kp‘,’ ¥C0)s
_ 6‘]4 4(11‘14 - 2
G(ayﬁls sx) - '— G(Xyﬂlsx x)’ G(ayﬂlsysy) - kz l 21c2 s G(ayﬂlsxsycy) == k k G(xyylc S Sy)
Cx iy
- 1 29, |, 49:194
G(ayﬁlc S. S’) == G("yy'sxsy y)’ G(“ﬁﬁlsx) == kx + -+ 3 + -3 )
. k" kx kxq7
) 2k
G(aﬂﬁlsxcx) == G(xﬂﬁ]s sx) G(aﬂﬁlsycy) == _ky# G(xﬁﬁlsysy)a G(aﬁﬁlsxsysy) = kz ysy)’
3 . A
Po 4 7 2q, 329, 16‘]1 4‘12)
G(afiflc,s,c,) = —— G(xyyls,s,c,), G(666|1) = =4 ——+ —+ ==
(epBlessyc,) kb Gy II ) (00011) = po (3ki E 3KE 3kS 3k kS

G(0dd[c,) = po— G(6d0|1), G(666|s,w) = _fo G(xééls w),

8 14 49, 13¢; 2qi 3q, Pa -
G(866]s,s, (-——+—-—+-——‘————'—-————— , G(000|s,c,w) = — G(xx0|s,C,w),
I5:5) = po| = 32 3kt 3k 3kE K2 kS (000ls,ex0) =75 Gexblsexm)

X

. G(&éé[s,s,cx) =- % G(xXX|545xCx)s

x

1] 22 4k2q. 2k} Tk —10k> 849495 4 2k2
G(é.vyll)———[~—~ A A LR i AR V) g, 4+ L2475 L 2300 GSyyle,) = =2 — G(Syyll),.
, ol T Tk T kg )T T, TR (yyl e~ G0yyIY)

1 19, 4kjq, 69194 4q»
G(Byyls,s) = — 22 Gx 5:5.),  G@yyls,s =_(__4~__r_4_.__1_4__3_ ,
) e (xyyl (Oyyls,s,) e o g g &

x
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PARTICLE TRAJECTORIES IN A TOROIDAL CONDENSER

W) = —

- k2 24,9 p
G(oyylsycy L —3‘4 - 7212_’,(_‘1> s G(Oyylsysyc,) = — ’,;% G(xyyls.s,cy)

p _ 2(7—1<:2c)(l4 49,44
G(éyylcxsysy) _— 7[:_2_ G(xyy|cxsysy), G(&yﬁlw) =— 76% G((S.V”S_p('yw), G(0yBlss) = [ k44 + ki‘h ’
' 4 242k 3+k§) U=k +6kDq,q4 | 245 ]
— e ’ = x 44 + + R
G(‘S.Vﬁlsx x) - G(\ ‘ﬁlsx x)’ G(‘syﬁls.vcy) [( k:ky + ky‘l’] ki {4 kik3q7 kfky
2p(2, 2/’02' .
G(‘S)ﬁls syw) =7 G(5Y)’|S ¢ Cl)), G(éyﬂlsxsysy) = 2k G(-\'Y.V|5x5ycy)’ G(ayﬁlc:xsycy) = -I—C—z_k- G(xyy,cx‘sysy >
x™y Xy
2 4q, | 21+kDqs 84104] .
GBI =—po| | + = + — + G(3pBlc.) = po—G(3BBI1),
(9PID) po[ S T 0
__%
G(aﬂﬁlsxsx) - _5 G()‘I}ﬁls sx),
1+k2 22 +8K2 14K 1 ) 2(k2—312)q,qs , 45 ]
= X = - _— — + ’
G(oBPls,s,) pol: klq, k2k2q, ky K2 14 k2kyq4 ki
2
G(6pPls,cyw) = — % G(dyylsyc,w), G(0BPlss,cy) = 2k2 $,Cy)s G(0BBle.sysy) = kz G(xyylc SySy) «
y

y

(5-32)

where q1, d2, 93, *°***, g7 are the abbreviation given in Table 1. To solve

eq. (5-29) we will use a method similar to the second order solution. Since

the right hand side of eq.(5-20a) is a function of w through vector m,

*m

(W = Emz nm°H(nm

mn

we can obtain the relationships between H(nIlI

relations and the initial conditions, all the matrix elements H(nIlI

I

Introducing eq.(5-33) into eq.(5-29) and comparing the coefficients of equal m,

Im) .

(w) is also considered to be a series of m.

|m) ana G

determined. The H(nﬂl
333348343 &
33488R33 3 dsaraRRraS
—3 AT EFRARATSAARAAASAST S
XXX |H H|H H H
XXO0 H H| |H H
xxb [H YlHl [H H H
xaa [H] [H[H]H H H
xad H|H H| [H H H
666 [H H[H] |H H] [+ H
xyy (H HIH| |H] [H HIH
xyp H Hi [H! [H H H
xBB [H| [H|H]H HiH HiH
aaa H H H
aad [H] [H[H[AT {H[H H H
abb| IH|H H] |H H] |H H
ayy H Hl [H] [H H H
ayf [H H{H| [H| IH H[H
afp H H| |H] [H H H
666 [H H[H|H[H H| [H H
6yy [R] [H[H H|H H H{H
6y | [H[H H| |H]| [H H H H
6pB |H HIH] [H] [H H HIH

Therefore we assume that

(5-33)

From these

Im).

|m) are |’

Im) are elements of a 19 x 22 matrix,



where all non-zero elements are indicated by H.

Explicitly these H(nmlm) are

1
H("m“) = ',;‘2; G(nll) + 1\2 G(npls,sy) —

x x4
2

G(nllllsysyw)a

1 2 _
H(nylw) = -l—c_% G(mylw) + e G(nylses.w)

x xd17

2 2 2k,
221\" G(muls,sy) — 9l3 G(nlssex®) — =5 Glmulsycyw)

47

LG ! Gnyle,w) + — G(n Is.Cy) — L G(nyls,c,) — 2 = G(nyyls.s.@)
o H(nyls,) = - ’k—3 G(nylw) + ’2—k3 G(nylsy) — Zl— i 3k miiSxCx ke ql'3

X

+ M G(nlllls.xsxsx) -

: 3
G(nyls,s,w) + ™

G(”l“lsxsysy) - 4k

Vx

G(n]lllcxsycy)s
5

kxq7 x x5
! l G CxSySy)s
H(nyle,) = — Hingl1), H(nylsw) = e G("mlc‘) + Zl_c: G(nyyls.w) + G("mls 5xCx) + (Mmulcss,sy)
1 3
H(nyle,w) = — k. G("m|‘x) + —k_ G(nyle,m) — Sk G("mls 5.5%) — 4k —— Gy |s,s sy)’

X

] 4 i : ( =—— — G(nyls,s-®),
H(nplsese) = — 32 G(mplsyse) + s G(npisccsw), H(nylsxc,) 3"3: G(nplssc) — qk3 (nul

x X

X

4k
1 4k = 1 — —2 G(nyyls,s,0),
H("l"lsysy) = :1‘_; G(nllllsysy) + ";z—y G(nllllsycyw)’ H(llm|SyC,j) | e G(nllllsycy) q; (gl ySy )

7

1 | oL
H(nyls.ow) = Z‘I— G(nyle,w), H(nyle,ow) = — k. G(”mls w), H(nyls.s.w) = e G(nyls,s:0), |

1 1
}I(nllllsxcxw) == ’3_ki' G(nnlllsxcxw)v H(nlll‘sysyw) - 6—7 G("Hllsysyw)’

x

|
_—1 = — ¥
H(nyls.5.8¢) = — I G(yls4555x)s H(ylsysx¢4) = — ) G(l$x5xCx)s

x

: 1
.H(nllllsycyw) = q_ G("llllsycyw),
' 7

‘ i A 1 k.
H(nyls,s,s,) = G(”mls sysy) t ikas , G("mlc 4Cy)s H(nylsss,¢y) = 7 G("llllsxsycy) - Zﬁc— ((nmleys,sy)s
k
H(nyileys,s,) = 3;1— G(nyleys,sy))  — T G(nulsssy6y)s  H(mules 8,Cy) = 7 G("m|c sycy) + o 4k G(”mls J sy)
s

(5-34)
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The eq.(5-33) can be rearranged as

X (W) ) N z m“H(nmlm)
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