卒業論文

マルチターン・タンデム飛行時間型 **"MULTUM-TOF/TOF"**における 質量較正法の検討

久保 歩

大阪大学理学部

物理学科

質量分析グループ

平成19年3月

要旨

本研究室で開発したマルチターン・タンデム質量分析計"MULTUM-TOF/TOF" は、MS1 にマルチターン飛行時間型質量分析計"MULTUM"を採用する事でプリ カーサーイオンの選択を高い分解能(1 u 以下)で行え、MS2 に"Quadratic-field Ion Mirror"を採用する事でプリカーサーイオンから生成した幅広いエネルギーを持 つフラグメントイオンを全質量範囲で同時に測定でき、生体高分子の解析が高 精度で可能となっている.

本研究では、"MULTUM-TOF/TOF"を用いてペプチド・タンパク質のアミノ酸 配列を解析する際に必要となる質量較正法の検討を行った.その結果、 "Quadratic-filed Ion Mirror"内のポテンシャル場が近似的な二次曲線であること を考慮してイオンの到達深度に合わせて質量較正を行うと、ポテンシャル場が 理想的な二次曲線であると仮定した既存の方法よりも質量決定精度が上がった ため(200 ppm 以下)、この方法について報告する.

目 次

1. はじめに	1
2. 装置原理と実験方法	2
3. 結果及び考察	10
4. まとめ	21
謝辞	22
参考文献	23

1. はじめに

近年, ESI (electrospray ionization, エレクトロスプレーイオン化)や MALDI (matrix-assisted laser desorption / ionization, マトリックス支援レーザー脱離イオ ン化)といったソフトなイオン化法の開発によって質量分析計が生体高分子など の解析に多数用いられるようになった.^{1,2} その中で、ペプチド・タンパク質のア ミノ酸配列解析を行う事ができる装置に2台の質量分析計を組み合わせたタン デム質量分析計があるが、一般的に市販されているタンデム質量分析計の中で、 高エネルギーCID が可能な装置は磁場型、飛行時間型の2つがある。磁場型の装 置は大きく、重いため設置する場所が限定されてしまう、飛行時間型では、高質 量分解能を実現するためには、

飛行距離を稼ぐために装置の大型化が必要とな りこれも場所が限定されてしまう.この問題を解決するために、当研究室では小 型でありながら閉経路を多重周回させることで飛行距離を稼ぎ、高分解能を有 すマルチターン飛行時間型質量分析"MULTUM"³と幅広いエネルギーを持った フラグメントイオンをそのまま同時に十分な分解能で測定可能な "Ouadratic-filed Ion Mirror"⁴の二つの装置を組み合わせたマルチターン・タンデ ム飛行時間型質量分析計"MULTUM-TOF/TOF"を開発した.この二つの装置を 採用することで高分解能での高エネルギーCID (collision induced dissociation, 衝 突誘起解離)が可能となり、タンパク質・ペプチドのアミノ酸配列解析が高精度 かつ効率良く行えるようになっている.しかし、飛行時間型質量分析計である ためフラグメントイオンの質量電荷比(*m/z*)は飛行時間という形で測定される. そのために飛行時間を質量に変換するための質量較正が必要となる. "Quadratic-field ion mirror"内に理想的な二次曲線型ポテンシャル場があると仮定 している既存の方法では、十分な質量決定精度が達成されておらず、未知試料 のアミノ酸配列を決定する段階には至っていない. 故に本研究では、未知試料の アミノ酸配列決定の前段階として、十分な質量決定精度を持つ質量較正法の確 立を目的として検討を行った.

2. 装置原理と実験方法

2.1 飛行時間型質量分析計について

飛行時間型質量分析計(time of flight mass spectrometer, TOFMS)の原理を以下 に示す.

飛行時間型質量分析計の主な構成は,図1のようになっている.イオン化領域 で生成されたイオン(質量 m,電荷 q)を一定電圧 V で加速すると、エネルギー保 存則から次の式が成り立つ.

$$qV = \frac{1}{2}mv^2 \tag{1}$$

これをある一定の距離 L の自由空間を飛行させると飛行時間 T は次のようになる.

$$T = \frac{L}{v} = L \sqrt{\frac{m}{2qV}}$$
(2)

したがって、イオンの飛行時間を測定することによって、そのイオンの質量電荷比が求められる.

図1. 飛行時間型質量分析計の概略図

2.2 タンデム質量分析法について

タンデム質量分析法とは、2 台の質量分析計を連結させて行う質量分析法を意 味し、MS/MS と表される. 手順を図 2 に示す. イオン源で生成されたイオンから (①)、1 台目の質量分析計(MS1)である特定の質量電荷比を持ったイオンを選択し (②)、その選択したイオン(プリカーサーイオン)を不活性ガスなどと衝突させる ことで断片化させ(③)、2 台目の質量分析計(MS2)で断片であるフラグメントイ オンを質量分析し(④)、スペクトルを測定する(⑤). この方法で得られたスペク トルを MS/MS スペクトルと定義する. このフラグメントイオンの質量電荷比か らプリカーサーイオンの構造を知ることができる. 特にペプチド・タンパク質は、 20 種類のアミノ酸が直線上に多数結合している. そのためタンデム質量分析法 を用いて、アミノ酸配列を解析することが可能である.

図2. タンデム質量分析法の模式図

2.3 実験装置

"MULTUM-TOF/TOF"は、図3で示される構成になっている.

実験の流れは以下のようになっている. MALDI イオン源でイオンが生成され, "MULTUM"によって質量分析され, Ion Gate で特定の質量電荷比を選択し, 衝突 室で不活性ガスと衝突させることで断片化させ, "Quadratic-field Ion Mirror"によ ってその断片であるフラグメントイオンを質量分析し,検出器である MCP(micro channel plate)によって検出する.

次に2台の飛行時間型質量分析計について説明する.

2.3.1 マルチターン飛行時間型質量分析計"MULTUM" (MS1)

飛行時間型質量分析計では、(2)式で示したように飛行時間は、飛行距離と直接 関係しているため、その分解能は飛行距離に大きく影響される. 故に高分解能 を達成するためには、一般的には装置を大型化させる必要がある. しかし、当研 究室で開発したマルチターン飛行時間型質量分析計"MULTUM"は、4枚のセク ター電極を図4で示されるようなタイミングで電場の on/off を制御することに よって、閉じた経路を多重周回させている. 詳しく説明するとイオン源に生成 されたイオンをパルス的に加速し、イオン源に近い側のセクター電極である"セ クター4"をイオンが導入する間だけ電場を切り、任意の周回数まで周回させた 後、その後衝突室側のセクター電極である"セクター1"の電場を切り、ある特 定のイオンが通過した瞬間だけ Ion Gate の電圧を落とす事で、モノアイソトピ ック質量のプリカーサーイオンのみを選択可能となっている. これにより、装 置を大型化させることなく、飛行距離を稼ぎ高分解能を実現した.

"MULTUM-TOF/TOF"では、MS1 に"MULTUM"を採用する事で,ある特定の質 量電荷比を持ったイオンのみを1u以下の精度で選択可能となっている.

2. 3. 2 "Quadratic-field Ion Mirror" (MS2)

"MULTUM"で選択されたプリカーサーイオンは、衝突室で不活性ガスと衝突 誘起解離(CID)することによってフラグメントイオンが生成される.このフラグ メントイオンは、質量に関わらずほぼ同じ速度を持っているため、MS2には飛行 時間が幅広い運動エネルギーを持つフラグメントイオンを分析できる質量分析 計が必要となる.そこで"MULTUM-TOF/TOF"では、内部に複数枚の電極を用い て近似的に二次曲線型ポテンシャル場を作り出す"Quadratic-field Ion Mirror"を 採用している.二次曲線型ポテンシャル場中では、飛行時間は運動エネルギー に依存せず、質量にのみ依存する.⁵そのため、他の飛行時間型質量分析計のよ うに予め質量範囲を設定する⁶必要がなく、また減速や再加速する^{7,8}必要もない. 故に同時に全質量範囲を十分な精度で測定可能となっている.

図 3. "MULTUM-TOF/TOF"の全体図

2.4 質量較正法

2.4.1 理論

"MULTUM-TOF/TOF"では、イオン化法としてマトリックス支援レーザー脱離イオン化法(MALDI)を採用しているため、ここではイオンの価数は一価であるとする.以後、質量電荷比(*m/z*)を質量(*m*)と表現する.

飛行時間と質量の間の関係式を説明する。まず, MS/MS スペクトルにおける全 飛行時間 T_{total} を MS1 での飛行時間 T_1 , MS2 での飛行時間 T_2 の二つに分けた.

$$T_{total} = T_1 + T_2 \tag{3}$$

MS1 でプリカーサーイオン(質量M)は、一定電圧Vで加速され、周回数に応じた距離Lを飛行するので、Mに寄らない項をbとすると T_{I} は次のようになる。

$$T_1 = L_{\sqrt{\frac{M}{2eV}}} + b \equiv a\sqrt{M} + b \tag{4}$$

MS2 である"Quadratic-field Ion Mirror"内で次の式で表される二次曲線型ポテンシャル場 U(z)を作り出している.

$$U(z) = \frac{1}{2}k(z - z_0)^2 + C \quad (z: 進行方向)$$
(5)

プリカーサーイオンから生成されたフラグメントイオン(質量 m)は式(5)で表 されるポテンシャル中を飛行するため,運動方程式は次のようになる.

$$m\frac{d^2z(t)}{dt^2} = -kz(t) \tag{6}$$

これは、単身動の運動方程式と同じであるため、その飛行時間は単振動の半 周期 *τ* と同じである.ここで *d* とは、*m* に寄らない項である.

$$T_2 = \frac{1}{2}\tau = \pi\sqrt{\frac{m}{k}} + d \equiv c\sqrt{m} + d \tag{7}$$

全飛行時間 T_{total}は,式(3),(4),(7)から次のようになる.

$$T_{total} = a\sqrt{M} + c\sqrt{m} + b + d \tag{8}$$

最終的に,全飛行時間をフラグメントイオンの質量*m*に依存する部分と依存しない部分Toの二つに分けることが可能となる.

$$T_{total} = c\sqrt{m} + T_O \quad (T_O \equiv a\sqrt{M} + b + d)$$
(9)

2.4.1 これまでの較正法(較正法 I)

式(7)においてミラー内のポテンシャルが理想的な二次曲線であると考えると次のようになる。

$$T_{total} = a\sqrt{M} + c\sqrt{m} + b + d \quad (a,b,c,d;constant)$$
(10)

標準試料となるペプチドの MS/MS スペクトルのフラグメントイオンピーク の質量および飛行時間を横軸 \sqrt{m} ,縦軸Tとして数点プロットし,図5のように 全プロット点から最小2乗法を用いて傾きからc,切片から T_o を求める.

図 5. 較正法 I での c 及び To の求め方

この *c* を用いることで未知試料の MS/MS スペクトルの横軸を飛行時間から 質量に変換することが可能となる.まず未知試料のプリカーサーイオンの質量 M^U を求める.(方法について後で説明する.)次に MS/MS スペクトルを測定し, そこでのプリカーサーイオンの飛行時間 T^U を求める.*c*, M^U , T^U 及び式(10)から 未知試料での $T_O(\equiv T_O^U)$ を求めることが可能となる.

$$T_o^{\ U} = T^U - c\sqrt{M^U} \tag{11}$$

式(11)及び(8)から次のようになる。

$$m = \left(\frac{T - T_O^{\ U}}{c}\right)^2$$
(12)

式(12)を用いることで飛行時間から質量に変換できる。

2.4.2 今回検討した較正法(較正法Ⅱ)

較正法 I ではミラー内に理想的な二次曲線型ポテンシャル場があると考えた.しかし,実際は近似的に二次曲線型ポテンシャル場を作り出しているため式(5)のようにはなっておらず,次のようになっている.

$$U = \frac{1}{2}k(z - z_0)^2 + C + \Delta(|z|)$$
(13)

そのため厳密に言うと式(9)のようにはなっておらず、イオンの到達深度によ

って*c*及び*d*は異なる.このずれを補完するために*c*及び*d*を較正法 I のよう に定数と考えるのではなく、ミラー内でのイオンの到達深度に合わせてそれぞ れ*c*及び*d*を求める必要がある.イオンの到達深度*z*_fは、フラグメントイオンの 運動エネルギー*E*_fによって決まる.

$$E_{f} = \frac{1}{2}k(z_{f} - z_{O})^{2} + C + \Delta(|z_{f}|)$$
(14)

フラグメントイオンの運動エネルギー E_f は, プリカーサーイオンの運動エネルギーを E_p とすると, 次のようになる.

$$E_f = \frac{m}{M} E_p \tag{15}$$

式(14)および(15)からイオンの到達深度は、ひとつの MS/MS スペクトル上で はフラグメントイオンの質量 m によってのみ決まる. すなわち, c 及び d を各 m に対してそれぞれ求める必要がある.

上記を考慮して、c及びdを求める際に較正法 I のように全プロット点から一つの値を求めるのではなく、図 6 のように隣接する 2 点を直線で結び、その傾き及び切片から各区間でそれぞれ c及びdを求め、 \sqrt{m} に対して c及び Δd のテーブル (Table:A) を作成した.

図 6. 較正法 II での c 及び To の求め方

Δ*d*に関しては、各区間でのそれぞれの切片の値からミラーが最も奥まで到 達するとき(プリカーサーイオン)の切片の値を基準として求めた.

実際にこれを他の未知試料に適用する場合は、まずプリカーサーイオンの質量が異なるためにテーブルの m の値をそれに応じて変えて、未知試料用のテーブル(Table:B)を新たに作る必要がある.上でも述べたように zf はプリカーサ

ーイオンのエネルギーすなわち加速電圧が同じであるならば、m/Mにのみ依存するため、他の試料にも.適用する事ができる. そのため、標準試料となるペプチドのプリカーサーイオンの質量を M_O とし、Table:A、Bの \sqrt{m} 、 Δd をそれぞれ $\sqrt{m_A}$ 、 Δd_A 、 $\sqrt{m_B}$ 、 Δd_B とすると次のようになる.

$$\sqrt{m_B} = \sqrt{\frac{M^U}{M_O}} \cdot \sqrt{m_A} \tag{16}$$

$$\Delta d_B = \sqrt{\frac{M^U}{M_O}} \cdot \Delta d_A \tag{17}$$

次に T_o を求める必要がある. Δd を求める際にミラーの最も奥まで到達する ときを基準としているため T_o は次の式で求められる. ここでミラーの最も奥 まで到達する場合の c を c_p としている.

$$T_o = T^U - c_p \sqrt{M^U} \tag{18}$$

式(18)の T_o及び式(16), (17)の $\sqrt{m_B}$, Δd_B を用いて次の式でテーブルの各区間 を飛行時間にし, Table:C を作成する.

$$T = T_O + c\sqrt{m_B} \tag{19}$$

これで MS/MS スペクトルの飛行時間に対する c を求めることができた.式 (18), (8)および Table: C から以下の式で飛行時間から質量に変換可能となる.

$$m = \left(\frac{T - (T_o + \Delta d_B)}{c}\right)^2 \tag{20}$$

3. 結果及び考察

標準試料として Angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu, M=1296.69)を用意した.未知試料として Bradykinin, Substance Pの2種類のペプ チドを用意し,それぞれの MS/MS スペクトルを測定した.

3.1 実験1

まず未知試料のモノアイソトピック質量(プリカーサーイオンの質量)を求めるのだが、今回は正確な質量があらかじめわかっていたため、それを用いた. 値はそれぞれ以下になる.

 Bradykinin: M=1060.6(u), Substance P: M=1347.7(u)
 (21)

 今回は行わなかったが実際に実験によって求める場合は以下の手順で行う.
 Substance P を例にとって示す.

手順

- 1. Substance P を周回させず(リニア), 不活性ガスとも反応させずにイオン の飛行時間を測定した.
- 2. 1 で測定した飛行時間から近い飛行時間を持つ質量既知のイオンで挟み、 同じ周回数で周回させ飛行時間を測定する.この際周回させるのは、リニ アの場合であると図7のように各同位体のピークが重なってしまうため正 確なモノアイソトピック質量を計算できないためである.多重周回させる と図8のようなスペクトルが得られるためモノアイソトピック質量を求め る事が可能となる.

Substance P であれば, Angiotensin I と P14R(*M*=1532.9)の二つになる.

3. 2 で測定したデータと式(22)を用いる事で Substance P のモノアイソトピック質量を求められる.

 $T = a\sqrt{M} + b \quad (a,b;constant) \tag{22}$

図 7. "MULTUM"にて周回させなかった場 合の TOF スペクトル

図 8. "MULTUM"にて 32 周回させた場 合の TOF スペクトル

3.2 実験2

Angiotensin I, Bradykinin, Substance PのMS/MS スペクトルを測定した. MS/MS スペクトルを測定する手順及び条件は以下のようになる.

- イオンを周回させ(図 9), Ion Gate を用いてモノアイソトピック質量のイ オンのみを選択した. (図 10)
- 2. 衝突室に不活性ガスを導入した.
- 3. 検出感度を上げるため予め検出器の電圧を上げてスペクトルを測定した. 得られた MS/MS スペクトルが図 11 になる.
- 測定条件
- 加速電圧:20 kV セクター電圧:3.92 kV ミラー電圧:25 kV レンズ電圧:4.5 kV パルサー電圧:-1.38 kV Ion Gate 幅:500 ns He ガス圧:5×10⁻⁵ Pa 検出器(MCP)電圧:-1.95 kV

Bradykinin MS/MSスペクトル

図 11. Angiotensin I (32周回後) Bradykinin (18周回後) Substance P (18周回後) の MS/MS スペクトル

3.3 質量較正

まず, 最初に図 11 の Angiotensin I の MS/MS スペクトルの各ピークを図 12 のように決定した. 各フラグメントイオンの表記法は, Biemann 表記⁹(図 13) による.

図13. Biemann 表記

Angiotensin I のアミノ酸配列はわかっており, 更にモノアイソトピック質量 のプリカーサーイオンから生成したフラグメントイオンであるため, 各フラグ メントイオンの質量は容易に求められる. また, 飛行時間を求める際には重心 値を採用した. 結果が以下の表1になる.

fragment ion	m[u]	飛行時間T[μs]
b2-NH ₃	255.13	800.811
a3	343.23	802.582
a4	506.30	805.264
a5	619.38	806.880
a6	756.44	808.669
а7	853.49	809.837
a8	1000.56	811.487
a9	1137.62	812.914
$[M+H]^+$	1296.69	814.460

表1. Angiotensin I をアサインして得られた m と T の関係

この結果を用いて,較正法 I および較正法 II で質量較正を行い,それぞれを Bradykinin・Substance P に適用した.以下では Bradykinin の場合を説明す る.(Substance P に対しても同じ事を行うので今回は省略する.)

3.3.1 較正法 I

表1のmとTの関係を横軸 \sqrt{m} ,縦軸Tとして、プロットしc及び T_{O} を求めたところ、以下のようになった.

$$c = 0.680792 \ (\mu s \cdot u^{-0.5})$$

$$T_{O} = 789.948 \ (\mu s)$$
(23)

これを Bradykinin に適用する場合を説明する.

この *c* と先ほど求めた Bradykinin のプリカーサーイオンのモノアイソトピック質量 1060.6 u および飛行時間 485.359 μ s,式(11)を用いて T₀^Uを求めたところ、次のようになった.

$$T_0^{\ \ \nu} = 463.188 \ (\mu s)$$
 (24)

式(23), (24)を式(12)から Bradykinin の MS/MS スペクトルの飛行時間を質量に 変換した.

Substance P に対しても同様のことを行った.

3.3.2 較正法 II

表1を	を用いて	Table:A	(表 2))を作成し	た.
-----	------	---------	-------	-------	----

	区間	始点 \sqrt{m}	終点 \sqrt{m}	с	$\Delta d_{\scriptscriptstyle A}$
	∽a3	0	18.527	0.693463	-0.31667
a	i3∽a4	18.527	22.501	0.674699	0.03096
a	4∽a5	22.501	24.887	0.677408	-0.02999
a	5∽a6	24.887	27.503	0.683870	-0.19079
а	n6∽a7	27.503	29.215	0.682494	-0.15297
а	7∽a8	29.215	31.632	0.682711	-0.15929
а	18∽a9	31.632	33.729	0.680505	-0.08950
a9`	∽ [M+H]⁺	33.729	36.010	0.677851	0

表 2. Angiotensin I を用いて作成した Table:A

Bradykinin の質量は 1060.6 u, Angiotensin I の質量は 1296.7 u であるため, 以下の比で Table:A を始点・終点及び Δd_A を縮小した.

$$\frac{\sqrt{M_{Bradykinin}}}{\sqrt{M_{Angiotensin1}}} = \sqrt{\frac{1060.6}{1296.7}} = 0.90439$$
(25)

そして Table:B(表 3)を作成した.

始点 \sqrt{m}	終点 \sqrt{m}	с	$\Delta d_{\scriptscriptstyle B}$
0	16.755	0.693463	-0.28639
16.755	20.350	0.674699	0.02800
20.350	22.508	0.677408	-0.02712
22.508	24.874	0.683870	-0.17255
24.874	26.421	0.682494	-0.13834
26.421	28.607	0.682711	-0.14406
28.607	30.504	0.680505	-0.08095
30.504	32.567	0.677851	0

表 3. Brandykinin に適用するための Table:B

この Table:B および式(18), (19)を用いて Table:C を作成した.

始点 Ttotal	終点 Ttotal	С	$T_{o} + \Delta d_{B}$
	474.616	0.693463	462.997
474.616	477.041	0.674699	463.312
477.041	478.503	0.677408	463.256
478.503	480.121	0.683870	463.111
480.121	481.178	0.682494	463.145
481.178	482.670	0.682711	463.139
482.670	483.961	0.680505	463.203
483.961	485.359	0.677851	463.284

表 4. Bradykinin に適用するための Table:C

この Table: C と式(20)を用いる事で変換可能となる.

3.4 結果

較正法Ⅰ,Ⅱを用いて変換した結果は,それぞれ以下のようになった.

Bradykinin に適用し, 各ピークをアサインした. (図 14) そして, アミノ酸配列 から求めたフラグメントイオンの計算値(モノアイソトピック質量)からのズレ Δm を較正法 I, II それぞれで求めた. (表 5)

Bradykinin MS/MSスペクトル

図 14. 飛行時間を質量に変換した Bradykinin の MS/MS スペクトル

fragment ion	計算値[u]	較正法 I [u]	<i>∆m</i> [u]	較正法 Ⅱ [u]	<i>∆m</i> [u]
a2	226.17	226.49	-0.32	226.34	-0.17
b2	254.16	255.08	-0.92	254.44	-0.28
a3	323.22	323.98	-0.76	323.22	0
×2	348.17	348.68	-0.51	348.14	0.03
wa3	376.2	376.51	-0.31	376.1	0.1
wa4	473.25	473.17	0.08	473.33	-0.08
z4	490.25	489.81	0.44	490.18	0.07
а5	527.31	527.01	0.3	527.34	-0.03
∨5	561.28	561.14	0.14	561.27	0.01
с5	572.33	572.2	0.13	572.37	-0.04
da6	598.35	598.38	-0.03	598.41	-0.06
a6	614.34	614.54	-0.2	614.45	-0.11
а7	711.39	711.67	-0.28	711.42	-0.03
×6	736.34	736.86	-0.52	736.32	0.02
wa7	764.37	764.86	-0.49	764.34	0.03
a8	858.46	859.47	-1.01	858.78	-0.32
у8	904.47	905.4	-0.93	904.73	-0.26
da9	929.5	930.24	-0.74	929.61	-0.11

表 5. 較正法 I、 II の質量決定精度(Bradykinin)

Substance P に対しても同様の事を行った. 結果が, 図 15 及び表 6 になる.

Substance P MS/MSスペクトル

図 15. 飛行時間を質量に変換した Substance P の MS/MS スペクトル

fragment ion	計算値[u]	較正法 I [u]	<i>∆m</i> [u]	較正法 Ⅱ [u]	<i>∆m</i> [u]
a2	226.17	225.04	1.13	226.14	0.03
c2	271.19	270.96	0.23	271.25	-0.06
da3	297.2	297.69	-0.49	297.48	-0.28
a3	354.26	355.66	-1.4	354.34	-0.08
z4	451.21	451.73	-0.52	451.1	0.11
da5	522.35	522.44	-0.09	522.41	-0.06
a5	579.37	579.2	0.17	579.47	-0.1
da6	650.41	650.21	0.2	650.48	-0.07
a6	707.43	707.04	0.39	707.37	0.06
а7	854.5	854.85	-0.35	854.69	-0.19
a8	1001.57	1002.1	-0.53	1001.49	0.08
da10	1129.63	1130.62	-0.99	1129.95	-0.32
a10	1171.67	1172.55	-0.88	1171.89	-0.22
da11	1242.71	1243.29	-0.58	1242.81	-0.1

表 6. 較正法 I, Ⅱの質量決定精度(Substance P)

3.5 考察

表4及び表5からBradykinin・Substance Pともに較正法Iに比べて較正法II の質量決定精度が小さくなっている.この事から飛行時間と質量が式(10)に表 されるような関係になっていないことがおらず, "Quadratic-field Ion Mirror"が 式(5)のような理想的な二次曲線型ポテンシャル場を作り出していない事がわ かった.

また,較正法 $I \cdot II$ ともに,程度に差はあるが,質量の大きい部分および小さい部分で Δm が大きくなっている.これは, Angiotensin I から Table:A を作る際 に低質量及び高質量域のフラグメントイオンをアサインできていないことに 起因していると思われる.

4. まとめ

今回検討した"Quadratic-field Ion Mirror"内でのイオンの到達深度に合わせて 質量較正を行う方法で、標準試料である Angiotensin I から比較的質量が近いも のに関しては、既存の方法よりも高い質量決定精度を得られ、アミノ酸配列決 定に十分な精度を得る事ができた.しかし、考察でも述べたが、質量が近いた めにこのような結果になった可能性もあるため、もっと多くの異なる質量を持 った試料で検証する必要がある.更に高質量域及び低質量域での精度を上げる ために Table:A を作る際に Angiotensin I の MS/MS スペクトルのフラグメント イオンをより多くアサインする必要がある.しかし、現状では Angiotensin I の それらの領域で、CID によってどのフラグメントイオンが生成されるかわから ないため、難しいものと考えられる.そのためフラーレンのようなフラグメン トイオンのアサインを比較的容易に行えるものを用いる事によって、まず Angiotensin I の MS/MS スペクトルをアサインする際の数を増やし、それを用 いる事によって解決できると考えられる.今後は、これらの問題を解決した上 で未知試料のアミノ酸配列決定を行っていきたいと考えている.

謝辞

本研究を進めるにあたってご協力いただいた皆様に心よりお礼を申し上げ ます.豊田岐聡先生には、質量分析の基本的な知識をはじめ、実験を行う際の 各種実験機器の取り扱い方、実験装置の特性など多くの事柄を教えていただき ました.石原盛男先生には、打ち合わせ等で貴重なご意見を頂き、研究を進 めるにあたり大きな助けとなりました.研究員の新間秀一さんには、本論文 作成において大変お世話になりました.大阪府立大学の長尾博文さんには、 研究に関する事柄のみならず、学生生活においても多くの助言、助力をいた だきました.学生の川村和哉さんには、実験をする際に助けていただきまし た.質量分析グループの皆様には、研究活動全般において様々な面からご指 導を頂きました. 参考文献

- 1) K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, and T. Yoshida, *Rapid Commun.*, *Mass Spectrum.*, **2**(1988), 151
- 2) M. Karas, D. Bachmann, U. Bahr, and F. Hillenkamp, *Int. J. Mass Spectrom.*, **78**(1987), 53
- M. Toyoda, D. Okumura, M. Ishihara, and I. Katakuse, *J.Mass Spectrom.*, 38(2003),1125
- 4) A. E. Giannakopulos, et all, Rev. Sci. Instrum., 73(2002), 2115
- U. N. Anderson, A. W. Colburn, A. A. Makarov, E. N. Raptakis, D. J. Reynolds, and P. J. Derrick, S. C. Davis, A. D. Hoffman, and S. Thomson, *Rev. Sci. Instrum.*, 69(1998), 3752
- R. Kaufmann, D. Kirsch, and B. Spengler, *Int. J. Mass Spectrom.*, Ion Processes 131(1994), 355
- K. Medzihradszky, J. M. Campbell, M. A. Baldwin, A. M. Falick, P. Juhasz, M. L. Vestal, and A. L. Burlingame, *Anal. Chem.*, 72(2000), 552
- 8) V. Schnaible, S. Wefing, A. Resemann, D. Suckau, Bücker, S. Wolfe-Kümmeth, and D. Hoffmann, *Anal. Chem.*, **74**(2002), 4980
- 9) K. Biemann, Biomed. Environ. Mass Spectrom., 16(1988), 99